• Title/Summary/Keyword: Control Parameters

Search Result 9,243, Processing Time 0.04 seconds

Coordinated Control Strategy and Optimization of Composite Energy Storage System Considering Technical and Economic Characteristics

  • Li, Fengbing;Xie, Kaigui;Zhao, Bo;Zhou, Dan;Zhang, Xuesong;Yang, Jiangping
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.847-858
    • /
    • 2015
  • Control strategy and corresponding parameters have significant impacts on the overall technical and economic characteristics of composite energy storage systems (CESS). A better control strategy and optimized control parameters can be used to improve the economic and technical characteristics of CESS, and determine the maximum power and stored energy capacity of CESS. A novel coordinated control strategy is proposed considering the coordination of various energy storage systems in CESS. To describe the degree of coordination, a new index, i.e. state of charge coordinated response margin of supercapacitor energy storage system, is presented. Based on the proposed control strategy and index, an optimization model was formulated to minimize the total equivalent cost in a given period for two purposes. The one is to obtain optimal control parameters of an existing CESS, and the other is to obtain the integrated optimal results of control parameters, maximum power and stored energy capacity for CESS in a given period. Case studies indicate that the developed index, control strategy and optimization model can be extensively applied to optimize the economic and technical characteristics of CESS. In addition, impacts of control parameters are discussed in detail.

Measurement strategy of a system parameters for the PI current control of the A.C. motor (교류 전동기의 PI 전류제어를 위한 시스템 파라미터 계측법)

  • Jung-Keyng Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.223-229
    • /
    • 2023
  • This Paper propose the method that measure main system parameters for PI(proportional-integral) current control of a.c. motor adopting the vector control technique. For current control, the PI control input is could be tuning by several selective methods. Among the several methods, the method that using the main system parameters, wire resistance and inductance, are frequently used. In this study, the technique to dissect and measure these two system parameters through the results of simple feedback control. This analytic measurement method is measuring parameters step by step dissecting the results of P control using simple proportional feedback gain about the unit step or multiple step reference command. This strategy is an real time analytic measurement method that calculate current control gains of torque component and flux component both for vector control of A.C. motor without introducing the further measurement circuits and complex measuring algorithms.

Control of Inverted Pendulum Using Adaptive Fuzzy System (적응 퍼지를 이용한 도립진자의 제어)

  • Hong, Dae-Seung;Ryu, Chang-Wan;Ko, Jae-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.696-698
    • /
    • 1998
  • Fuzzy controller design consists of intuition, and any other information about how to control system, into a set of rules. If the parameters of membership function in premise part and consequent part are set adequately, the controller designed can control plant well. But, if the parameters of function are set inadequately, the controller can't control well. So we must modify parameters using adaptive learning procedure. In this paper, we design adaptive fuzzy controller, and then verify its robustness.

  • PDF

Parameter Tuning Algorithm for Sliding Mode Control (슬라이딩 모드 제어를 위한 인자 튜닝 알고리듬)

  • 류세희;박장현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.438-442
    • /
    • 2003
  • For an efficient sliding mode control system stability and chattering avoidance should be guaranteed. A continuation method using boundary layer is well known as one solution for this. However since not only model uncertainties and disturbances but also control task itself is variable. it is practically impossible to set controller parameters - control discontinuity, control bandwidth, boundary layer thickness - in advance. In this paper first an adaptation law of control discontinuity is introduced to assure system stability and then fuzzy logic based tuning algorithm of design parameters is applied based on monitored performance indices of tracking error, control chattering, and model precision. In the end maximum control bandwidth not exciting unmodeled dynamics and minimum control discontinuity, boundary layer thickness making system stable and free of chattering are found respectively. This eliminates control chattering and enhances control accuracy as much as possible under given control situation. In order to demonstrate the validity of the proposed algorithm safe headway maintenance control for autonomous transportation system is simulated. The control results show that the proposed algorithm guarantees system stability all the time and tunes control parameters consistently and in consequence implements an efficient control in terms of both accuracy and actuator chattering.

  • PDF

Effectiveness of Multi Interventional Package on Selected Parameters of Metabolic Syndrome among Women - A Pilot Study

  • Elizabeth, Attonassary Jose;Aruna, Swaminathan;Mercy, Parayidathil Joseph
    • Journal of Korean Academy of Nursing
    • /
    • v.50 no.4
    • /
    • pp.523-532
    • /
    • 2020
  • Purpose: The purpose of the study was to compare the effectiveness of multi interventional package (MIP) and lifestyle interventions (LI) on physiological parameters of women with metabolic syndrome, to compare the effectiveness of MIP and LI on biochemical parameters of women with metabolic syndrome and to compare the effectiveness of MIP and LI on socio-psychological parameters of women with metabolic syndrome. Methods: A quasi experimental nonequivalent control group design with two experimental groups and one control group was used to collect data from 60 self-help group women. Samples were selected by multistage sampling. Reflexology foot massage, dietary modification, moderate intensity exercise and structured education were given to MIP group and dietary modification, moderate intensity exercise and structured education were given to LI group for 12 weeks. Control group received routine care. Demographic and clinical data sheets were used to collect basic information. Knowledge was assessed by a knowledge questionnaire. Physiological (weight, body mass index, waist circumference and blood pressure) and biochemical parameters (HDL, triglycerides and FBS) were assessed before and after the intervention. Results: The study found significant change in the physiological and biochemical parameters of metabolic syndrome as well as knowledge among the MIP group and LI group compared to the control group (p <.001). Conclusion: MIP and LI are effective in controlling the parameters of metabolic syndrome. Hence the guidance may be provided to women with metabolic syndrome for adopting necessary lifestyle changes as well as reflexology foot massage to control the physiological and biochemical parameters of metabolic syndrome.

On-load Parameter Identification of an Induction Motor Using Univariate Dynamic Encoding Algorithm for Searches

  • Kim, Jong-Wook;Kim, Nam-Gun;Choi, Seong-Chul;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.852-856
    • /
    • 2004
  • An induction motor is one of the most popular electrical apparatuses owing to its simple structure and robust construction. Parameter identification of the induction motor has long been researched either for a vector control technique or fault detection. Since vector control is a well-established technique for induction motor control, this paper concentrates on successive identification of physical parameters with on-load data for the purpose of condition monitoring and/or fault detection. For extracting six physical parameters from the on-load data in the framework of the induction motor state equation, unmeasured initial state values and profiles of load torque have to be estimated as well. However, the analytic optimization methods in general fail to estimate these auxiliary but significant parameters owing to the difficulty of obtaining their gradient information. In this paper, the univariate dynamic encoding algorithm for searches (uDEAS) newly developed is applied to the identification of whole unknown parameters in the mathematical equations of an induction motor with normal operating data. Profiles of identified parameters appear to be reasonable and therefore the proposed approach is available for fault diagnosis of induction motors by monitoring physical parameters.

  • PDF

Development of PSCF Model and Determination of Proper Values of Control Parameters (PSCF 모형의 개발과 제어변수의 결정)

  • Cheong, Jang-Pyo;Lee, Seung-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.135-143
    • /
    • 2006
  • The objective of this study is to develop PSCF (potential source contribution function) program and determine the optimal values of control parameters to enhance the prediction of PSCF modeling. This study provides an important information and methodologies that can be used to get better results of locating influencing sources, especially unknown and fugitive sources. To determine proper values of control parameters in PSCF model, the diagnostic assessment on the results obtained by the various input conditions was carried out. PSCF model has created and improved from version 1.0 to version 7.0 since 200 I and the measured data (at least > 100) of receptor, and the values of control input parameters should be arranged and determined to obtain reliable results in PSCF modeling. The size of modeling domain must be determined to include enough trajectories to get reliable results. And the size of grid is recommended to be 2.5 $\sim$ 5 degrees for global scale, 0.2 $\sim$ 1 degrees for regional scale and 0.05 degree for local scale.

Design of a User-Friendly Control System using Least Control Parameters (최소 제어 인자 도출을 통한 사용편의성 높은 제어시스템 설계)

  • Heo, Youngjin;Park, Daegil;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.67-77
    • /
    • 2014
  • An electric motor is the one of the most important parts in robot systems, which mainly drives the wheel of mobile robots or the joint of manipulators. According to the requirement of motor performance, the controller type and parameters vary. For the wheel driving motors, a speed tracking controller is used, while a position tracking controller is required for the joint driving motors. Moreover, if the mechanical parameters are changed or a different motor is used, we might have to tune again the controller parameters. However, for the beginners who are not familiar about the controller design, it is hard to design pertinently. In this paper, we develop a nominal robust controller model for the velocity tracking of wheel driving motors and the position tracking of joint driving motors based on the disturbance observer (DOB) which can reject disturbances, modeling errors, and dynamic parameter variations, and propose the methodology for the determining the least control parameters. The proposed control system enables the beginners to easily construct a controller for the newly designed robot system. The purpose of this paper is not to develop a new controller theory, but to increase the user-friendliness. Finally, simulation and experimental verification have performed through the actual wheel and joint driving motors.

A Design of One-Sided Cumulative Scored Control Chart (단방향 누적점수관리도의 설계)

  • 최인수;이윤동
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.3
    • /
    • pp.31-45
    • /
    • 1998
  • This paper proposes a method of designing one-sided cumulative scored control charts to control the process mean with a normally distributed quality characteristic. The average run length(ARL) is obtained from the average sample number of sequential probability ratio test(SPRT) on trinomial distribution. Using the analogy between cumulative scored control chart and SPRT for trinomial observations, a procedure is presented to determine three control chart parameters; lower and u, pp.r scoring boundaries and action limit. The parameters are determined by minimizing the ARL when the process is out of control with prespecified ARL when the process is in control.

  • PDF

Control of Manipulators with Hyper Degrees of Freedom:Shape Control Based on Curve Parameter Estimation

  • Mochiyama, Hiromi;Shimemura, Etsujiro;Kobayashi, Hisato
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.12-15
    • /
    • 1996
  • In this paper, a new shape control law is derived as a result of introducing the parametric curve representation. This control alw is based on the estimation of the curve parameters corresponding to the target joint positions and the target tip position. Estimating target curve parameters makes it possible to find, easily, a simple shape control law by the Lyapunov design method.

  • PDF