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1. INTRODUCTION

A Hyper Degrees of Freedom (HDOF) manipulator is
a manipulator which has extraordinarily many degrees rigid link
of freedom, like a elephant trunk, a snake body or a
monkey tail. If we could control such a manipulator
completely, we would let the manipulator achieve dex-
trous tasks: for example, moving in highly constrained
environment or grasping various sizes and shapes of ob-
jects and so on.

For an HDOF manipulator, the most important out- P
put to be controlled is its shape rather than its tip po-
sition/orientation. Therefore, we have proposed shape
control to bring an HDOF manipulator onto a given
target curve and derived a shape control law which do
not need to solve the troublesome inverse kinematics
S o Fig.1: Kinematic Chain

In this paper, a new shape control law is derived as
a result of introducing the parametric curve represen-
tation which is conventional in the classical differential
geometry. The derived shape control law is based on
estimating the curve parameters corresponding to the
target joint positions and the target tip position on the
curve. Estimating target curve parameters makes it
possible to find, easily, a simple shape control law by
the Lyapunov design method.
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2. PRELIMINARIES

2.1 Kinematics and Dynamics

Consider a kinematic chain of (7 + 1) rigid links con-
nected by means of # universal joints (Fig.1) each of
which has 2 orthogonal revolute axes (Fig.2). One end
of the chain is connected to the base. The other end is
open and referred to as the tip of the manipulator.

Fig.2: Universal Joint
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Let p; € R (¢ =0, ---, i — 1) denote the position
vector of the (i+ 1)-st universal joint, and p, € R is
the position vector of the manipulator’s tip.

Assume that we can generate torque »; (j=1, ---,
n) at each revolute axis, where n = 27 since each
universal joint has 2 joint angles. Let 8; be the rotation
angle of the j-th axis and 8 = [8,---6,]T € ®R™.
Then the dynamics of a manipulator with n degrees
of freedom can be expressed as

M(6)6+C(6,8)0 +g(8) =u (1)

where u = [u; -+ u, |7 € R" is the control input
torque vector, M (@) € R™*" is the inertia matrix (pos-
itive definite for any 8), C(6,0)6 € R™ is the Coriolis
and centrifugal forces vector, and g(8) € R” is the grav-
itational torque vector. The matrix M () —2C(9,8)
has skew symmetric property. Throughout this paper,
friction torques are neglected.

Remark: By using universal joints, some link parame-
ters used in the manipulator dynamics (1) become zero,
such as the link length between a pair of revolute joints.
However, this does not effect the crucial properties of
the dynamics; for example, the inertia matrix M (8)
still remains positive definite for any 6.

2.2 Representation of Curves

Fig.3: Representation of a Curve

To represent curves in R%, we introduce the para-
metric curve representation. Consider a map

c:R- R (2)

and a curve parameter ¢ € ®. When o moves from
—00 to +oo, the locus of the image ¢(o) forms a curve
in ®* (Fig.3).

Assume that the map ¢ has the following properties.

Assumption 1 (Curves)

1. ¢(o) is continuously differentiable w.r.t. o.

2. 309 € R,¢c(009) = 0. This means that a curve
always passes through the origin. Without loss of
generality, we set 09 =0.
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d
3. Vo € R, Hag(o') = 1. That is, the length of
arbitrary tangent vectors on a curve is equal to
1.
dc . , T .
4. E‘—(Uo) =4, where 1, :=[100]" . That s, the

tangent vector at the origin is x -axis-oriented.

Define k(o) and 7(0) as the curvature and the
torsion of ¢ at o respectively. There exist posi-
tive constants ky and Ty s.t. Vo € R, k(o) <
kpm,T(0) € Tar . That is, both the curvature and
the torsion of a curve are bounded from above.

3. PROBLEM STATEMENT

In this chapter, we formulate a shape control prob-
lem.

3.3 Available Information

We make the following assumptions w.r.t. the available
information.

Assumption 2 (Information)

1. A joint angle vector 6 and its velocity vector 6
are measurable.

2. The dynamical model of e manipulator (1) is ex-
actly known.

3.4 Objective Set

In this section, we clarify the objective of shape control
in terms of the following 5 requirements:

1. All the joints and the tip of the manipulator are
on a given target curve. That is,

c(o!) —p;(6) =0

where o} € R is the curve parameter correspond-
ing to the target position of the (Z — 1)-st joint.
Define e(8,0) € R3" as

e(8,0) :=¢&(o) - p(6) (4)

where o € R*, and p(8), ¢(c) € R3" are defined
as

c(o1) p.(6)

p(9):

(5)

Pn'(o)

Then we can rewrite condition (3) as

¢(n)

e(@,0*)=0

where o* = [o2---a2]T.



2. The manipulator is well-ordered on the curve

(Fig.4), which is expressed as

gy <07 <--- <o}

(7)
where ag§ = 0. Or more strictly

H, < H(c") (8)

where H(o) is a diagonal matrix defined as

9)
and H,, € R" is the constant matrix defined as
H,, :=diag{ !, -, Iz } where [; is the :-th
link length.

H(o) :=diag{o1 — 09, **,0n —0n_1}

well-ordered il-ordered

Fig.4: Well-ordered Requirement

. The manipulator does not take a shortcut (Fig.5),
which is expressed as
H(c*)<Hy (10)
where H s € R" is the constant matrix depend-
ing upon Kpr, Ti , ;.

shortcut

Fig.5: No-Shortcut Requirement

. Joint angles of the manipulator are limited. For
some positive constant 0 ; < 7, 8; satisfies the
condition

104 <Bari  (i=1,---,m) (1)
or equivalently,
L(6) < Ly (12)
where
L(0) = diag {|61], ---, 6] } (13)

and Ly € R™ is a constant matrix defined as
LM e diag{eM‘l, ey, oM,n }
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5. The manipulator does not move on the curve.
That is, )
0 =o. (14)
By the above requirements, we can describe the objec-
tive set of shape control M* € R?", as

{a: = [BT 9T]T
H, <H(0")< Hy,L(0) < Ly, 0 = o}
(15)

Remark: The usefulness of introducing the paramet-
ric curve representation is that we can represent the
desirable situation such as requirement 2 and 3 explic-
itly. As a result, we can say that our objective state
is unique under a mild assumption shown in the next
section.

M* =

e(8,0%) = o,

3.5 Shape Control Problem
We make the following assumption:

Assumption 3 (Non-singularity)

For 0* and o* satisfying the requirements 1 — 4,

det J(8*,0*) #0 (16)
where J(8,0) € R37"*3% is defined as
oe op

J(8,0):=| == it . 17

00)=| L) -Ze ] an

<

This assumption assures that there is only one objec-
tive point z* € R?", which is immediately concluded
from the implicit function theorem. We call J(8,0)
the shape Jacobian.

Under this assumption, the shape control problem
can be stated as follows.

Shape Control Problem

Under the stated assumptions, find a control in-
put u s.t. the state of the manipulator system

r 4717 .
[9 6 ] converges to M* = {z*} asymptotically.
<

3.6 Curve Parameter Estimation

One of the simplest strategies to solve the shape control
problem is:

1. find «*, and

2. apply the well known control laws in joint space
(See [1], for example).

For the shape control problem, we need to find =*,
however, the calculating @* is troublesome. Therefore,
our strategy proposed here is to control the shape of



the manipulator by estimating the objective curve pa-
rameter vector o*, that is, we do not need to find x*.
Let o0 € R" be the estimated curve parameter vector

. T
and £ = [OT o7 o7 ] € R°" be the extended state

space vector. The extended objective set M € R,
is expressed as

M {¢ le(d,0)=0,Hn < H(o) £ Hy,

L(6) < Ly, 6= o}. (18)
There exists only one objective point ¢* € R°®. Thus,

we can formulate an extended shape control problem as
follows.

Extended Shape Control Problem

Under the stated assumptions, find a control input

u s.t. the extended state of the manipulator system
T T

£ = [BT 8 o7 ] converges to M2 = {&*} asymp-

totically. <

Clearly, it is enough to solve the extended shape control
problem to meet the requirements 1 - 5.

4. SHAPE CONTROL LAW

In this chapter, we show a shape control law with
a curve parameter estimation law. Our result is the
following proposition.

Proposition

Assume that the given target curve is chosen to
satisfy the condition
VE € QC R, detJ(0,0)#0 (19)

for some @ D> M7 . Consider a shape control law

{

with ¢ curve parameter estimation law

-]

where K € R373 gnd K4 € R™*" are constant pos-
itive definite matrices. Then the state £ converges to
M: ={¢*} asymptotically. <o

op
58

(9)} Ke(6,0) — K40 +g(6)  (20)

de

(@) (21)

}T Ke(8,0)

(proof)

Consider the Lyapunov function candidate V : R7 —
R
. 1.7 -1 r
V(e,0)=§9 M(9)9+§e Ke. (22)
The first term of the above function represents the ki-
netic energy. and the second term is the error index
specifying the distance between the manipulator and
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the target curve, estimation error included. The time
derivative of V along the trajectory becomes

Ve, ) = 6 M(6)6+ % 0 N1(6)6 +eTKe

_ T
= ¢ [u - {Z—Z(O)} Ke - g(O)]
+eTK———8:09(:)[7
_ _ T
= 0K~ eTKg—;(a) {g—:(a)} Ke

(23)

which shows that V is only negative semi-definite w.r.t.
(e, 8). Consider the set ., C £ such that,

{eQ| V() <v,H,< H(c) < Hy,
L(6) < Ly} (24)

2y

for some positive constant . For a sufficiently small
7, the set Q. is compact and positively invariant be-
cause V < 0 in ., . By LaSalle’s theorem, we conclude
that the state £ starting from the interior of {1, con-
verges to M which is the largest invariant set satisfying

V=0 in Q,. The set M is described as
m={¢eq, | =0, JTKe=o0}. (25)

Since M C Q, J is invertible in M. Thus (25) is
rewritten as

m={¢eq,

9=o,e=0}. (26)
The equation (26) shows that M is equivalent to M.
Thus, we conclude that & converges to M? = {¢*}
asymptotically. a

5. CONCLUSION

In this paper, we showed a new shape control law
based on curve parameter estimation. By this control
law, we can control a serial rigid link HDOF manipula-
tor without solving the troublesome inverse kinematics.
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