Development of PSCF Model and Determination of Proper Values of Control Parameters

PSCF 모형의 개발과 제어변수의 결정

  • Cheong, Jang-Pyo (Division of Civil and Environmental Engineering, Kyungsung University) ;
  • Lee, Seung-Hoon (Environmental Science and Technology Research Center, Kyungsung University)
  • 정장표 (경성대학교 건설환경공학부) ;
  • 이승훈 (경성대학교 환경문제연구소)
  • Published : 2006.02.01

Abstract

The objective of this study is to develop PSCF (potential source contribution function) program and determine the optimal values of control parameters to enhance the prediction of PSCF modeling. This study provides an important information and methodologies that can be used to get better results of locating influencing sources, especially unknown and fugitive sources. To determine proper values of control parameters in PSCF model, the diagnostic assessment on the results obtained by the various input conditions was carried out. PSCF model has created and improved from version 1.0 to version 7.0 since 200 I and the measured data (at least > 100) of receptor, and the values of control input parameters should be arranged and determined to obtain reliable results in PSCF modeling. The size of modeling domain must be determined to include enough trajectories to get reliable results. And the size of grid is recommended to be 2.5 $\sim$ 5 degrees for global scale, 0.2 $\sim$ 1 degrees for regional scale and 0.05 degree for local scale.

Keywords

References

  1. 이승훈 (2002) 대기오염 위치확인을 위한 PSCF 모형의 적용, 경성대학교 대학원 박사학위논문, 7-37
  2. 이승훈, 정장표, 장영환 (2005) PSCF 모형의 개발과 적용, 2005년 한국대기환경학회 추계학술대회 논문집, 121-123
  3. 이승묵, 허종배, 정장표 (2003) 황사시 서울시 대기중 중금속 건식침적의 오염원 위치 파악을 위한 Hybrid Receptor Model의 적용, 2003년 한국대기환경학회 추계학술대회 논문집, 273-276
  4. 이승묵, 허종배, 이용미, 서용석, 김지현, 정장표 (2004) Hybrid Receptor Model을 이용한 서울시 대기중 $PM_{2.5}$ 이온성분 오염원의 위치파악, 2004년 한국대기환경학회 춘계학술대회 논문집, 371-374
  5. 장영환 (2004) 상수원에 대한 대기침적의 영향과 잠재적 오염원의 규명, 경성대학교 박사학위논문, 57-60
  6. 정장표, 이승훈, 장영환, 조효정, 이승묵 (2003) 국지적인 규모에서의 PSCF 모형의 적용, 2003년도 대한환경공학회 추계학술연구발표회 논문집, 118-119
  7. 조효정 (2005) 부산광역시 오존농도의 시공간적 특성과 영향배출원 분포특성, 경성대학교 대학원 박사학위논문, 19-25
  8. Ashbaugh, L.L., W.C. Malm, and W.Z. Sadeh(1985) Aresi-dence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmospheric Environment 19, 1263-1270 https://doi.org/10.1016/0004-6981(85)90256-2
  9. Cheng, M.D., P.K. Hopke, and Y. Zeng (1993) A Receptor Methodology for Determining Source Regions of Particle Sulfate Composition Observed at Dorset, Ontario, J. of Geophsical Research 98, 16, 16839-16849 https://doi.org/10.1029/92JD02622
  10. Gao, N., M.D. Cheng, and P.K. Hopke (1993) Potential Source Contribution Function Analysis and Source Apportionment of Sulfur Species Measured at Rubidoux, CA during the Southern California Air Quality Study, 1987, Analytica. Chimica. Acta. 277, 369-380 https://doi.org/10.1016/0003-2670(93)80449-U
  11. Hopke, P.K., N. Gao, and M.D. Cheng (1993) Combining Chemical and Meteorological Data to Infer Source Areas of Airborne Pollutants, Chemometrics and Intelligent Laboratory Systems, 19, 187-199 https://doi.org/10.1016/0169-7439(93)80103-O
  12. Hopke, P.K., N. Gao, and M.D. Cheng (1993) Combining Chemical and Meteorological Data to Infer Source Areas of Airborne Pollutants, Chemometrics and Intelligent Laboratory Systems, 19, 187-199 https://doi.org/10.1016/0169-7439(93)80103-O
  13. Hopke, P.K., L.A. Barrie, S.M. Li, M.D. Cheng, C. Li., and Y. Xie (1995) Possible sources and preferred pathways for biogenic and non-sea-salt sulphur for the high Arctic. J. of Geophsical Research 100, 16, 595-603
  14. Hopke, P.K. (1998) Receptor Models for Particulate Matter Management, Unpublished internal information note
  15. Hsu, Y.K. (2001) Ph. D. Thesis, The Use of Receptor Models to Locate Atmospheric Pollutant Sources : Polych-lorinated Biphenyls in Chicago
  16. Hsu, Y.K., T.M. Holsen, and P.K. Hopke (2003) Comparison of Hybrid receptor models to locate PCB sources in Chicago, Atmospheric Environment, 37, 545-562 https://doi.org/10.1016/S1352-2310(02)00886-5
  17. Lin, C.Y.C., D.J. Jacob, and A.N. Fiore (2001) Trend in exceedances of the ozone air quality standard in the continental Unite States, 1980-1998, Atmospheric Environment, 35, 3217-3228
  18. Malm, W.C., C.E. Johnson, and J.F. Bresch (1986) Application of Principal Component Analysis for Purposes of Identifying Source-receptor Relationships in Receptor Methods for Source Apportionment, Pace, T. G., ed., Air Pollution Control Association, Pittsburgh, PA, 127-148
  19. Poirot, R.L, P.R. Wishinski, P.K. Hopke, and A.V. Polissar (2001) Comparative Application of Multiple Receptor Methods To Identify Aerosol Sources in Northern Vermont, ES&T, 35, 4622-4236 https://doi.org/10.1021/es010588p
  20. Poissant, L. (1999) Potential sources of atmospheric total gaseous mercury in the St. Lawrence River valley, Atmospheric Environment, 33, 2537-2547 https://doi.org/10.1016/S1352-2310(98)00207-6
  21. Polissar, A.V., P.K. Hopke, P. Pattero, Y.J. Kaufmann, D.K. Hall, and B.A. Bodhanie, E.G. Dutton, and J.M. Harris (1999) The aerosol at Barrow, Alaska: long-term trends and source locations, Atmospheric Environment, 33, 2441-2458 https://doi.org/10.1016/S1352-2310(98)00423-3
  22. Polissar, A.V., P.K. Hopke, and J.M. Harris (2001) Source Regions for Atmospheric Aersol Measured at Barrow, Alaska, ES&T, 35, 4214-4226 https://doi.org/10.1021/es0107529
  23. Zeng, Y. and P.K. Hopke (1989) A study of sources of acid precipitation in Ontario, Canada. Atmospheric Environment, 23, 1499-1509 https://doi.org/10.1016/0004-6981(89)90409-5
  24. ARL NOAA http://www.arl.noaa.gov