• Title/Summary/Keyword: Control Object

Search Result 2,599, Processing Time 0.035 seconds

Object Search Algorithm under Dynamic Programming in the Tree-Type Maze

  • Jang In-Hun;Lee Dong-Hoon;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.333-338
    • /
    • 2005
  • This paper presents the target object search algorithm under Dynamic Programming (DP) in the Tree-type maze. We organized an experimental environment with the concatenation of Y-shape diverged way, small mobile robot, and a target object. By the principle of optimality, the backbone of DP, an agent recognizes that a given whole problem can be solved whether the values of the best solution of certain ancillary problem can be determined according to the principle of optimality. In experiment, we used two different control algorithms: a left-handed method and DP. Finally we verified the efficiency of DP in the practical application using our real robot.

Analysis about visual object's layout and position by forklift driver's instrument cognitivity (Forklift 운전자의 계기판 인지성에 따른 Visual object의 layout과 위치에 관한 분석)

  • Jung Woo-Geun;Park Peom
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.5
    • /
    • pp.97-105
    • /
    • 2005
  • Achievement degree can be improved by display offering more effective process about cognitive, pattern recognition than making observers use memory, integration, and cognitive process of control. And this research is proved by several scholars' researches [4][5][7][9]. In this study, researches was conducted about cognition according to layout of object in instrument panel. To decide layout of instrument panel, Cognition value was preferentially decided about all location. And then, objects are arranged to correct position of low cognition following the inferior procedure about each location. As a result, we get conclusion that gauge location is taken in high importance order through mechanical importance degree bringing huge damage during driving forklift-truck.

Extended Kalman Filter Approach to Dynamic Electrical Impedance Tomography with Internal Electrodes

  • S.I. Kang;Kim, K.Y.;Kim, H.C.;Kim, M.C.;Kim, S.;Lee, H.J.;Lee, Y.J.;W.C. Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.39.1-39
    • /
    • 2001
  • Impedance tomography (EIT) is a relatively new imaging modality in which the internal impedivity distribution is reconstructed based on the known sets of injected currents through the electrodes and induced voltages on the surface of the object. We describe a dynamic EIT imaging technique for the case where the resistivity distribution inside the object changes rapidly within the time taken to acquire a full set of independent measurement data, In doing so, the inverse problem is treated as the nonlinear state estimation problem and the unknown state (resistivity) is estimated with the aid of extended Kalman filter in a minimum mean square error sense. In particular, additional electrodes are attached to the known internal structure of the object ...

  • PDF

A Study on the 3-Dimensional Analysis by Bundle Adjustment in Close Range Photogrammetry (근접사진측량의 번들조정에 의한 삼차원 위치해석에 관한 연구)

  • 백은기;목찬상
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.6 no.2
    • /
    • pp.10-18
    • /
    • 1988
  • In the three-dimensional analysis and deformation analysis of large structures, efficient is the use of the multiple method of close range photogrammetry which approaches the object distance. This study analyzes the influence of errors according to the overlap, the control points, and the object distance, to solve the problems which are raised in the multiple method. A wall-board, 7 meters by 3 meters, was used as a test field on which a total of 225 unknown points were equally disposed. The photographs with changing the overlap and object distance were taken by P-31 camera system. a total of 143 negatives are used in this study for computing 3-dimensional coordinates and its standard errors, and bundle adjustment of strips and blocks developed with on-line system is applied. In case of decreasing the number of control points, simulation error increases but actual error decreases and increases again. Due to the changed of object distances Z error represents largely compared to X, Y error, but good results in Z can be obtained by increasing the redundancy. And simulation error or actual error shows best results at the endlap of about 70%. To sum up this study, approprate arrangement of control points and overlap is meaningful, and multiple method by short object distance will be widely used to precision and deformation analysis of critical structures.

  • PDF

Implementation of Self-adaptive System using the Algorithm of Neural Network Learning Gain

  • Lee, Seong-Su;Kim, Yong-Wook;Oh, Hun;Park, Wal-Seo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.453-459
    • /
    • 2008
  • The neural network is currently being used throughout numerous control system fields. However, it is not easy to obtain an input-output pattern when the neural network is used for the system of a single feedback controller and it is difficult to obtain satisfactory performance with when the load changes rapidly or disturbance is applied. To resolve these problems, this paper proposes a new mode to implement a neural network controller by installing a real object for control and an algorithm for this, which can replace the existing method of implementing a neural network controller by utilizing activation function at the output node. The real plant object for controlling of this mode implements a simple neural network controller replacing the activation function and provides the error back propagation path to calculate the error at the output node. As the controller is designed using a simple structure neural network, the input-output pattern problem is solved naturally and real-time learning becomes possible through the general error back propagation algorithm. The new algorithm applied neural network controller gives excellent performance for initial and tracking response and shows a robust performance for rapid load change and disturbance, in which the permissible error surpasses the range border. The effect of the proposed control algorithm was verified in a test that controlled the speed of a motor equipped with a high speed computing capable DSP on which the proposed algorithm was loaded.

A Study on a Wireless Communication-based Tool Control System to prevent FOD Occurrence (FOD 발생 예방을 위한 무선통신 기반 공구 관리 시스템 연구)

  • Junyi Park;Myungjun Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.16-25
    • /
    • 2023
  • There are various types of foreign object debris (FOD) in the aviation industry. Tools lost by workers can act as a risk factor throughout aircraft operation, manufacturing, and maintenance fields. Accidents caused by tools lost due to workers' carelessness continue to occur throughout the aviation industry. Aviation-related institutions such as FAA and EASA have established tool control regulations and systems to prevent FOD occurrence. However, in Korea, related regulations and procedures are insufficient. A systematic and effective tool control system is required for reliable manufacturing, airworthiness, operation, and maintenance of aircraft. In this paper, tool control regulations and procedures of domestic and foreign air traffic authorities and aviation industry-related organizations were studied. A wireless communication-based tool control system was proposed based on the NAS 412's tool control regulations certified by the National Standards Association.

Cohesion and Coupling Metric for Classes in Object - Oriented System (객체 지향 시스템에서의 클래스 응집도와 결합도 메트릭)

  • Lee, Jong-Seok;Wu, Chi-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.595-606
    • /
    • 2000
  • Software metrics evaluate the development process, measure the software development effort, and control the software quality effectively. Moreover in a current status to emphasize reusability, it is necessary to study of cohesion and coupling that plays an important role in evaluating reusability. Object oriented methodology to use the concept like encapsulation, inheritance, and polymorphism demands metrics that are different from existing procedural methodology, so a study for object oriented metrics is in progress at the present time. In this paper, we propose cohesion and coupling metrics for object oriented program, evaluate the proposed metrics by using the complexity properties proposed by Weyuker and Briand, and extract cohesion and coupling from C++ code.

  • PDF

Simultaneous and Coded Driving System of Ultrasonic Sensor Array for Object Recognition in Autonomous Mobile Robots

  • Kim, Ch-S.;Choi, B.J.;Park, S.H.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2519-2523
    • /
    • 2003
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a corner, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding ultrasonic signals, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, the current presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

  • PDF