• Title/Summary/Keyword: Control Object

Search Result 2,605, Processing Time 0.041 seconds

Cylindrical Object Recognition using Sensor Data Fusion (센서데이터 융합을 이용한 원주형 물체인식)

  • Kim, Dong-Gi;Yun, Gwang-Ik;Yun, Ji-Seop;Gang, Lee-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.656-663
    • /
    • 2001
  • This paper presents a sensor fusion method to recognize a cylindrical object a CCD camera, a laser slit beam and ultrasonic sensors on a pan/tilt device. For object recognition with a vision sensor, an active light source projects a stripe pattern of light on the object surface. The 2D image data are transformed into 3D data using the geometry between the camera and the laser slit beam. The ultrasonic sensor uses an ultrasonic transducer array mounted in horizontal direction on the pan/tilt device. The time of flight is estimated by finding the maximum correlation between the received ultrasonic pulse and a set of stored templates - also called a matched filter. The distance of flight is calculated by simply multiplying the time of flight by the speed of sound and the maximum amplitude of the filtered signal is used to determine the face angle to the object. To determine the position and the radius of cylindrical objects, we use a statistical sensor fusion. Experimental results show that the fused data increase the reliability for the object recognition.

  • PDF

Tracking and Capturing a Moving Object Using Active Camera Mounted on a Mobile Robot (이동로봇에 장착된 능동 카메라를 이용한 이동물체의 추적과 포획)

  • Park, Jin-U;Park, Jae-Han;Yun, Gyeong-Sik;Lee, Jang-Myeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.741-748
    • /
    • 2001
  • In this paper, we propose a method of tracking and capturing a moving object by a mobile robot. The position of the moving object is acquired from the relation through color-based image information from a 2-DOF active camera mounted on the mobile robot. The direction and rotational angular velocity of the moving object are estimated using a state estimator. A Kalman fiber is used as the state estimator for taking characteristics of robustness against noises and uncertainties included in the input data. After estimating the trajectory of the moving object, we decide on the optimal trajectory and plan the motion of the mobile robot to capture the target object within the shortest distance and time. The effectiveness of the proposed method is demonstrated by the simulations and experiments.

  • PDF

The Study of IEC61850 Object Models for Transformer Preventive Diagnosis (변압기 예방진단을 위한 IEC61850 객체모델에 관한 연구)

  • HwangBo, Sung-Wook;Oh, Eui-Suk;Kim, Beung-Jin;Kim, Hyun-Sung;Lee, Jung-Buk;Park, Gui-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.103-104
    • /
    • 2006
  • Since the first proposition of IEC61850 object model at 1993, many questions about making a seamless model have been issued. the reason which they have worry about is that the functions of the equipment are supposed to be changed properly and new equipment and scheme are need to be introduced according to user's application. To handle those issues, TC57 which is a IEC committee for power control and communication has continuously updated the object model. Nowadays along with the new object model involving power quality, distribution resource and wind power, the committee has a plan to announce the revision of IEC61850-7-4. In the study, authors will present the prediction and diagnosis object models for transformer. Transformer models for protection and control have already been dealt with in the international standard but the models for prediction and diagnosis have never mentioned until now. Designing the prediction and diagnosis functions with the existing IEC61850-7-4, it'll be shown what is a proper object model for prediction and diagnosis.

  • PDF

Moving Object Following by a Mobile Robot using a Single Curvature Trajectory and Kalman Filters (단일곡률궤적과 칼만필터를 이용한 이동로봇의 동적물체 추종)

  • Lim, Hyun-Seop;Lee, Dong-Hyuk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.599-604
    • /
    • 2013
  • Path planning of mobile robots has a purpose to design an optimal path from an initial position to a target point. Minimum driving time, minimum driving distance and minimum driving error might be considered in choosing the optimal path and are correlated to each other. In this paper, an efficient driving trajectory is planned in a real situation where a mobile robot follows a moving object. Position and distance of the moving object are obtained using a web camera, and the rotation angular and linear velocities are estimated using Kalman filters to predict the trajectory of the moving object. Finally, the mobile robot follows the moving object using a single curvature trajectory by estimating the trajectory of the moving object. Using the estimation by Kalman filters and the single curvature in the trajectory planning, the total tracking distance and time saved amounts to about 7%. The effectiveness of the proposed algorithm has been verified through real tracking experiments.

Development of Cylindrical-object Grasping Force Measuring System with Haptic Technology for Stroke's Fingers (햅틱기술을 이용한 뇌졸중환자의 원통물체잡기 힘측정장치 개발)

  • Kim, Hyeon Min;Kim, Gab Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.300-307
    • /
    • 2013
  • This paper describes the development of a cylindrical-object grasping force measuring system applied haptic technology to measure the grasping force of strokes patients' fingers and other patients' paralyzed fingers. Because the cylindrical-object and the force measuring device of the developed cylindrical-object grasping force measuring system are connected with the electrical wires, patients and their families have difficulty not only measuring the patients' grasping force using the system but also knowing their rehabilitation extent when using it. In this paper, the cylindrical-object grasping force measuring system applied haptic technology was developed, and the cylindrical-object grasping force measuring device sends data to the rehabilitation evaluating system applied haptic technology by wireless communication. The grasping force measurement characteristic test using the system was carried out, and it was confirmed that the rehabilitation extent of the patients' paralyzed fingers and normal people fingers can be evaluated.

Position Detection and Gathering Swimming Control of Fish Robot Using Color Detection Algorithm (색상 검출 알고리즘을 활용한 물고기로봇의 위치인식과 군집 유영제어)

  • Akbar, Muhammad;Shin, Kyoo Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.510-513
    • /
    • 2016
  • Detecting of the object in image processing is substantial but it depends on the object itself and the environment. An object can be detected either by its shape or color. Color is an essential for pattern recognition and computer vision. It is an attractive feature because of its simplicity and its robustness to scale changes and to detect the positions of the object. Generally, color of an object depends on its characteristics of the perceiving eye and brain. Physically, objects can be said to have color because of the light leaving their surfaces. Here, we conducted experiment in the aquarium fish tank. Different color of fish robots are mimic the natural swim of fish. Unfortunately, in the underwater medium, the colors are modified by attenuation and difficult to identify the color for moving objects. We consider the fish motion as a moving object and coordinates are found at every instinct of the aquarium to detect the position of the fish robot using OpenCV color detection. In this paper, we proposed to identify the position of the fish robot by their color and use the position data to control the fish robot gathering in one point in the fish tank through serial communication using RF module. It was verified by the performance test of detecting the position of the fish robot.

Performance Analysis of Load Control Model for Navigation/Guidance System on Flying Object (비행 물체의 유도제어 시스템 설계를 위한 하중(중력수) 제어 모델의 성능분석)

  • Wang, Hyun-Min;Woo, Kwang-Joon;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.87-96
    • /
    • 2009
  • In conventional method, flight model is discribed to differential equation by linealization of nonlinear object motion equation. As state equation from differential equation of moving object, the controller is designed by transfer functions of each module under discrimination of stability criteria. But this conventional method is designed under limitation of nonlinearity from object's shape and speed. In other word, The greater part of guidance/navigation system was satisfied with the result of good performance for normal figure of flight object, not sudden changed flight condition, not high speed. But it is not able to give full play to its ability on flight object which has abnormal figure, sudden changeable motion, high speed. Therefore, in this paper was presented performance analysis of load control model for navigation/guidance system on flying object being uncertainty, non-linear like abnormal figure, sudden changeable motion, high speed and is presented method of trajectory control(controllability) ahead of controllability and stability to achieve flight mission. In other word, this paper shows the first step of Min-design method and flight control model.

IoT Based Intelligent Position and Posture Control of Home Wellness Robots (홈 웰니스 로봇의 사물인터넷 기반 지능형 자기 위치 및 자세 제어)

  • Lee, Byoungsu;Hyun, Chang-Ho;Kim, Seungwoo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.636-644
    • /
    • 2014
  • This paper is to technically implement the sensing platform for Home-Wellness Robot. First, self-localization technique is based on a smart home and object in a home environment, and IOT(Internet of Thing) between Home Wellness Robots. RF tag is set in a smart home and the absolute coordinate information is acquired by a object included RF reader. Then bluetooth communication between object and home wellness robot provides the absolute coordinate information to home wellness robot. After that, the relative coordinate of home wellness robot is found and self-localization through a stereo camera in a home wellness robot. Second, this paper proposed fuzzy control methode based on a vision sensor for approach object of home wellness robot. Based on a stereo camera equipped with face of home wellness robot, depth information to the object is extracted. Then figure out the angle difference between the object and home wellness robot by calculating a warped angle based on the center of the image. The obtained information is written Look-Up table and makes the attitude control for approaching object. Through the experimental with home wellness robot and the smart home environment, confirm performance about the proposed self-localization and posture control method respectively.

Visual Servoing of manipulator using feature points (특징점을 이용한 매니퓰래이터 자세 시각 제어)

  • 박성태;이민철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1087-1090
    • /
    • 2004
  • stereo vision system is applied to a mobile manipulator for effective tasks. The robot can recognize a target and compute the position of the target using a stereo vision system. In this paper we persent a visual approach to the problem of object grasping. First we propose object recognization method which can find the object position and pose using feature points. A robot recognizes the feature point to Object. So a number of feature point is the more, the better, but if it is overly many, the robot have to process many data, it makes real-time image processing ability weakly. In other to avoid this problem, the robot selects only two point and recognize the object by line made by two points. Second we propose trajectory planing of the robot manipulator. Using grometry of between object and gripper, robot can find a goal point to translate the robot manipulator, and then it can grip the object successfully.

  • PDF

Object Tracking Algorithm for a Mobile Robot Using Ultrasonic Sensors

  • Park, M.G.;Lee, M.C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.44.5-44
    • /
    • 2001
  • This paper proposes the algorithm which a mobile robot tracks the object captured by ultrasonic sensors of the robot and automatically generates a path according to the object In the proposed algorithm, a robot detects movements of the object as using ultrasonic sensors and then the robot follows the moving object. This algorithm simplifies robot path planning. The eight ultrasonic sensors on the robot capture distances between the robot and objects. The robot detects the movements of the object by using the changes of the distances captured by ultrasonic sensors. The target position of the robot is determined as the position of the detected moving object. The robot follows the object according to this movement strategy. The effectiveness of the proposed algorithm is verified through experiments.

  • PDF