• Title/Summary/Keyword: Control Networks

Search Result 4,015, Processing Time 0.03 seconds

On Improving Wireless TCP Performance Using Supervisory Control (관리 제어를 이용한 무선 TCP 성능 향상에 관한 방법)

  • Byun, Hee-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.1013-1017
    • /
    • 2010
  • This paper proposes a systematic approach to the rate-based feedback control based on the supervisory control framework for discrete event systems. We design the supervisor to achieve the desired behavior for TCP wireless networks. From the analysis and simulation results, it is shown that the controlled networks guarantee the fair sharing of the available bandwidth and avoid the packet loss caused by the buffer overflow of TCP wireless networks.

A Study on a Stochastic Nonlinear System Control Using Neural Networks (신경회로망을 사용한 비선형 확률시스템 제어에 관한 연구)

  • Seok, Jin-Wuk;Choi, Kyung-Sam;Cho, Seong-Won;Lee, Jong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.263-272
    • /
    • 2000
  • In this paper we give some geometric condition for a stochastic nonlinear system and we propose a control method for a stochastic nonlinear system using neural networks. Since a competitive learning neural networks has been developed based on the stochastcic approximation method it is regarded as a stochastic recursive filter algorithm. In addition we provide a filtering and control condition for a stochastic nonlinear system called the perfect filtering condition in a viewpoint of stochastic geometry. The stochastic nonlinear system satisfying the perfect filtering condition is decoupled with a deterministic part and purely semi martingale part. Hence the above system can be controlled by conventional control laws and various intelligent control laws. Computer simulation shows that the stochastic nonlinear system satisfying the perfect filtering condition is controllable and the proposed neural controller is more efficient than the conventional LQG controller and the canonical LQ-Neural controller.

  • PDF

Static Control of Boolean Networks Using Semi-Tensor Product Operation (Semi-Tensor Product 연산을 이용한 불리언 네트워크의 정적 제어)

  • Park, Ji Suk;Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.137-143
    • /
    • 2017
  • In this paper, we investigate static control of Boolean networks described in the framework of semi-tensor product (STP) operation. The control objective is to determine control input nodes and their logical values so as to stabilize the considered Boolean network to a desired fixed point or cycle. Using topology of Boolean networks such as incidence matrix and hub nodes, a set of appropriate control input nodes is selected, and based on STP operations, we assign constant control inputs so that the controlled network can converge to a prescribed fixed point or cycle. To validate applicability of the proposed scheme, we conduct a numerical study on the problem of determining control input nodes for a Boolean network representing hierarchical differentiation of myeloid progenitors.

A Dynamic Neural Networks for Nonlinear Control at Complicated Road Situations (복잡한 도로 상태의 동적 비선형 제어를 위한 학습 신경망)

  • Kim, Jong-Man;Sin, Dong-Yong;Kim, Won-Sop;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2949-2952
    • /
    • 2000
  • A new neural networks and learning algorithm are proposed in order to measure nonlinear heights of complexed road environments in realtime without pre-information. This new neural networks is Error Self Recurrent Neural Networks(ESRN), The structure of it is similar to recurrent neural networks: a delayed output as the input and a delayed error between the output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by back-propagation and each weights are updated by RLS(Recursive Least Square). Consequently. this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. We can estimate nonlinear models in realtime by ESRN and learning algorithm and control nonlinear models. To show the performance of this one. we control 7 degree of freedom full car model with several control method. From this simulation. this estimation and controller were proved to be effective to the measurements of nonlinear road environment systems.

  • PDF

Load Allocation Strategy for Command and Control Networks based on Interdependence Strength

  • Bo Chen;Guimei Pang;Zhengtao Xiang;Hang Tao;Yufeng Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2419-2435
    • /
    • 2023
  • Command and control networks(C2N) exhibit evident multi-network interdependencies owing to their complex hierarchical associations, interleaved communication links, and dynamic network changes. However, the existing command and control networks do not consider the effects of dependent nodes on the load distribution. Thus, we proposed a command and control networks load allocation strategy based on interdependence strength. First, a new measure of interdependence strength was proposed based on the edge betweenness, which was followed by proposing the inter-layer load allocation strategy based on the interdependence strength. Eventually, the simulation experiments of the aforementioned strategy were designed to analyze the network invulnerability with different initial load capacity parameters, allocation model parameters, and allocation strategies. The simulation indicates that the strategy proposed in this study improved the node survival rate of the interdependent command and control networks model and successfully prevented cascade failures.

Robot Trajectory Control using Prefilter Type Chaotic Neural Networks Compensator (Prefilter 형태의 카오틱 신경망을 이용한 로봇 경로 제어)

  • 강원기;최운하김상희
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.263-266
    • /
    • 1998
  • This paper propose a prefilter type inverse control algorithm using chaotic neural networks. Since the chaotic neural networks show robust characteristics in approximation and adaptive learning for nonlinear dynamic system, the chaotic neural networks are suitable for controlling robotic manipulators. The structure of the proposed prefilter type controller compensate velocity of the PD controller. To estimate the proposed controller, we implemented to the Cartesian space control of three-axis PUMA robot and compared the final result with recurrent neural network(RNN) controller.

  • PDF

Evolving Neural Network for Realtime Learning Control (실시간 학습 제어를 위한 진화신경망)

  • 손호영;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.531-531
    • /
    • 2000
  • The challenge is to control unstable nonlinear dynamic systems using only sparse feedback from the environment concerning its performance. The design of such controllers can be achieved by evolving neural networks. An evolutionary approach to train neural networks in realtime is proposed. Evolutionary strategies adapt the weights of neural networks and the threshold values of neuron's synapses. The proposed method has been successfully implemented for pole balancing problem.

  • PDF

Nonlinear Adaptive Flight Control Using Neural Networks and Backstepping (신경회로망 및 Backstepping 기법을 이용한 비선형 적응 비행제어)

  • Lee, Taeyoung;Kim, Youdan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1070-1078
    • /
    • 2000
  • A nonlinear adaptive flight control system is proposed using a backstepping controller with neural network controller. The backstepping controller is used to stabilize all state variables simultaneously without the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics which includes angle of attack, sideslip angle, and bank angle. It is assumed that the aerodynamic coefficients include uncertainty, and an adaptive controller based on neural networks is used to compensate for the effect of the aerodynamic modeling error. It is shown by the Lyapunov stability theorem that the tracking errors and the weights of neural networks exponentially converge to a compact set. Finally, nonlinear six-degree-of-freedom simulation results for an F-16 aircraft model are presented to demonstrate the effectiveness of the proposed control law.

  • PDF

Design of Optimal Controller for the Congestion in ATM Networks (ATM망의 체증을 해결하기 위한 최적 제어기 설계)

  • Jung Woo-Chae;Kim Young-Joong;Lim Myo-Taeg
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.359-365
    • /
    • 2005
  • This paper presents an reduced-order near-optimal controller for the congestion control of Available Bit Rate (ABR) service in Asynchronous Transfer Mode (ATM) networks. We introduce the model, of a class of ABR traffic, that can be controlled using a Explicit Rate feedback for congestion control in ATM networks. Since there are great computational complexities in the class of optimal control problem for the ABR model, the near-optimal controller via reduced-order technique is applied to this model. It is implemented by the help of weakly coupling and singular perturbation theory, and we use bilinear transformation because of its computational convenience. Since the bilinear transformation can convert discrete Riccati equation into continuous Riccati equation, the design problems of optimal congestion control can be reduced. Using weakly coupling and singular perturbation theory, the computation time of Riccati equations can be saved, moreover the real-time congestion control for ATM networks can be possible.

Convergence Progress about Applied Gain of PID Controller using Neural Networks (신경망을 이용한 PID 제어기 이득값 적용에 대한 수렴 속도 향상)

  • Son, Jun-Hyug;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.89-91
    • /
    • 2004
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult to the PID gains suitably lots of researches have been reported with respect to turning schemes of PID gains. A Neural Network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal is convergence speed progress about applied gain of PID controller using the neural networks.

  • PDF