• Title/Summary/Keyword: Control Networks

Search Result 4,049, Processing Time 0.033 seconds

A Survey of Self-optimization Approaches for HetNets

  • Chai, Xiaomeng;Xu, Xu;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.1979-1995
    • /
    • 2015
  • Network convergence is regarded as the development tendency of the future wireless networks, for which self-organization paradigms provide a promising solution to alleviate the upgrading capital expenditures (CAPEX) and operating expenditures (OPEX). Self-optimization, as a critical functionality of self-organization, employs a decentralized paradigm to dynamically adapt the varying environmental circumstances while without relying on centralized control or human intervention. In this paper, we present comprehensive surveys of heterogeneous networks (HetNets) and investigate the enhanced self-optimization models. Self-optimization approaches such as dynamic mobile access network selection, spectrum resource allocation and power control for HetNets, etc., are surveyed and compared, with possible methodologies to achieve self-optimization summarized. We hope this survey paper can provide the insight and the roadmap for future research efforts in the self-optimization of convergence networks.

Joint Transmission Slot Assignment, FSO Links Allocation and Power Control for Hybrid RF/FSO Wireless Mesh Networks

  • Zhao, Yan;Shi, Wenxiao;Shi, Hanyang;Liu, Wei;Wu, Pengxia
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.325-335
    • /
    • 2017
  • Hybrid radio frequency/free space optical (RF/FSO) wireless mesh networks have attracted increasing attention for they can overcome the limitations of RF and FSO communications and significantly increase the throughput of wireless mesh networks (WMNs). In this article, a resource assignment optimization scheme is proposed for hybrid RF/FSO wireless mesh networks. The optimization framework is proposed for the objective of maximizing throughput of overall hybrid networks through joint transmission slot assignment, FSO links allocation and power control with the consideration of the fading nature of RF and FSO links. The scheme is formulated as an instance of mixed integer linear program (MILP) and the optimal solutions are provided using CPLEX and Gurobi optimizers. How to choose the appropriate optimizer is discussed by comparing their performance. Numerous simulations are done to demonstrate that the performance of our optimization scheme is much better than the current case of having the same topology.

Energy Harvesting Framework for Mobile Sensor Networks with Remote Energy Stations (원격 에너지 저장소를 가진 이동 센서 네트워크를 위한 에너지 수확 체계)

  • Kim, Seong-Woo;Lee, Jong-Min;Kwon, Sun-Gak
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1184-1191
    • /
    • 2009
  • Energy harvesting from environment can make the energy constrained systems such as sensor networks to sustain their lifetimes. However, environmental energy is highly variable with time, location, and other factors. Unlike the existing solutions, we solved this problem by allowing the sensor nodes with mobilizer to move in search of energy and recharge from remote energy station. In this paper we present and analyze a new harvesting aware framework for mobile sensor networks with remote energy station. The framework consists of energy model, motion control system and data transfer protocol. Among them, the objective of our data transfer protocol is to route a data packet geographically towards the target region and at the same time balance the residual energy and the link connectivity on nodes with energy harvesting. Our results along with simulation can be used for further studies and provide certain guideline for realistic development of such systems.

Novel Uplink Congestion Control Method for TCP Throughput Enhancement (TCP 성능 향상을 위한 새로운 상향링크 혼잡 제어 기법)

  • Sohn, Kyungho;Kim, Han-Seok;Kwak, Dongho;Roy, Abhishek;Kim, Dongsook;Kim, Young Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.153-156
    • /
    • 2017
  • In this paper, we propose a novel uplink congestion control scheme, which enhances downlink TCP throughput by improving response time of TCP acknowledgements without TCP modification. Through the experimental results, it is manifested that the proposed scheme is able to achieve better downlink TCP throughput.

MAC Protocol for Reliable Multicast over Multi-Hop Wireless Ad Hoc Networks

  • Kim, Sung-Won;Kim, Byung-Seo;Lee, In-Kyu
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.63-74
    • /
    • 2012
  • Multicast data communication is an efficient communication scheme, especially inmulti-hop ad hoc networks where the media access control (MAC) layer is based on one-hop broadcast from one source to multiple receivers. Compared to unicast, multicast over a wireless channel should be able to deal with varying channel conditions of multiple users and user mobility to provide good quality to all users. IEEE 802.11 does not support reliable multicast owing to its inability to exchange request-to-send/clear-to-send and acknowledgement packets with multiple recipients. Thus, several MAC layer protocols have been proposed to provide reliable multicast. However, additional overhead is introduced, as a result, which degrades the system performance. In this paper, we propose an efficient wireless multicast MAC protocol with small control overhead required for reliable multicast in multi-hop wireless ad hoc networks. We present analytical formulations of the system throughput and delay associated with the overhead.

An Iterative Analysis of Single-Hop B-MAC Networks Under Poisson Traffic

  • Jung, Sung-Hwan;Choi, Nak-Jung;Kwon, Tae-Kyoung
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • The Berkeley-medium access control (B-MAC) is a lightweight, configurable and asynchronous duty cycle medium access control (MAC) protocol in wireless sensor networks. This article presents an analytic modelling of single-hop B-MAC protocol under a Poisson traffic assumption.Our model considers important B-MAC parameters such as the sleep cycle, the two stage backoff mechanism, and the extended preamble. The service delay of an arriving packet and the energy consumption are calculated by an iterative method. The simulation results verify that the proposed analytic model can accurately estimate the performance of single-hop B-MAC with different operating environments.

A Novel Dynamic Spectrum Access Algorithm for Cognitive Radio Networks

  • Zhao, Ming;Yin, Chang-Chuan;Wang, Xiao-Jun
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.38-44
    • /
    • 2013
  • This paper proposes a new dynamic spectrum access (DSA) algorithm for cognitive radio networks. Once initialized, this algorithm works without the need of coordination overhead and hence can be used when no control channel is available. Secondary user (SU) lists and predetermined access control are used in this algorithm. We analyze the probability of no SU collision with primary user and the throughput of our proposed algorithm. Extensive simulations show that our algorithm outperforms the existing DSA algorithm in terms of both the aggregate throughput and the traffic distribution fairness. Furthermore, the validity of our analysis is confirmed by simulation results.

Prefilter Type Velocity Compensating Robot Controller Design using Modified Chaotic Neural Networks (Prefilter 형태의 카오틱 신경망 속도보상기를 이용한 로봇 제어기 설계)

  • Hong, Su-Dong;Choi, Un-Ha;Kim, Sang-Hee
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.4
    • /
    • pp.184-191
    • /
    • 2001
  • This paper proposes a prefilter type velocity compensating control system using modified chaotic neural networks for the trajectory control of robotic manipulator. Since the structure of modified chaotic neural networks(MCNN) and neurons have highly nonlinear dynamic characteristics, MCNN can show the robust characteristics for controlling highly nonlinear dynamics like robotic manipulators. For its application, the trajectory controller of the three-axis robot manipulator is designed by MCNN. The MCNN controller acts as the compensator of the PD controller. Simulation results show that learning error decrease drastically via on-line learning and the performance is excellent. The MCNN controller showed much better control performance and shorter calculation time compared to the RNN controller, Another advantage of the proposed controller could by attached to conventional robot controller without hardware changes.

  • PDF

Impact of Power Control Optimization on the System Performance of Relay Based LTE-Advanced Heterogeneous Networks

  • Bulakci, Omer;Redana, Simone;Raaf, Bernhard;Hamalainen, Jyri
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.345-359
    • /
    • 2011
  • Decode-and-forward relaying is a promising enhancement to existing radio access networks and is already standardized in 3rd generation partnership project (3GPP) as a part of long term evolution (LTE)-Advanced Release 10. Two inband operation modes of relay nodes are supported, namely type 1 and type lb. Relay nodes promise to offer considerable gain for system capacity or coverage, depending on the deployment prioritization, in a cost-efficient way. Yet, in order to fully exploit the benefits of relaying, the inter-cell interference which is increased due to the presence of relay nodes should be limited. Moreover, large differences in the received power levels from different users should be avoided. The goal is to keep the receiver dynamic range low in order to retain the orthogonality of the single carrier-frequency division multiple access system. In this paper, an evaluation of the relay based heterogeneous deployment within the LTE-Advanced uplink framework is carried out by applying the standardized LTE Release 8 power control scheme both at evolved node B and relay nodes. In order to enhance the overall system performance, different power control optimization strategies are proposed for 3GPP urban and suburban scenarios. A comparison between type 1 and type 1b relay nodes is as well presented to study the effect of the relaying overhead on the system performance in inband relay deployments. Comprehensive system level simulations show that the power control is a crucial means to increase the cell edge and system capacities, to mitigate inter-cell interference and to adjust the receiver dynamic range for both relay node types.

Robust Control of Piezo Actuator using Wavelet Networks (웨이블릿 네트워크를 이용한 압전 구동기의 견실제어)

  • Yang, Chang-Kwan;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.723-725
    • /
    • 2004
  • An iterative robust control design for PZT using Gaussian wavelet networks is proposed. A Gaussian wavelet network with accurate approximation capability is employed to approximate the nonlinear hysteresis dynamics of PZT systems by using an iterative control algorithm. Depending on the finite number of wavelet basis functions which results in unavoidable approximation errors, a robust control law is provided to guarantee the stability of the closed-loop nano positioning system. Finally, the effectiveness of the robust control approach is illustrated through comparative simulations on a PZT.

  • PDF