• 제목/요약/키워드: Control Container

검색결과 559건 처리시간 0.023초

Gain-Scheduling 기법을 이용한 크레인의 흔들림 제어에 관한 연구 (A Study on the Sway Control of a Crane Based on Gain-Scheduling Approach)

  • 김영복
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.53-64
    • /
    • 2001
  • The gain-scheduling control technique is vary useful in the control problem incorporating time varying parameters which can be measured in real time. Based on these facts, in this paper the sway control problem of the pendulum motion of a container hanging on the trolly, which transports containers from a container ship to trucks, is considered. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, the trolley motion control strategy is introduced and applied. But, in this paper, we introduce and synthesize a new type of swing motion control system. In this control system, a small auxiliary mass is installed on the spreader. And the actuator reacts against the auxiliary mass, applying inertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we assume that an plant parameter is varying and apply the gain-scheduling control technique design the anti-swing motion control system for the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

로프 길이변화를 고려한 크레인의 흔들림 제어에 관한 연구: Gain-Scheduling 기법에 의한 제어기 설계 (A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach)

  • 김영완;김영복
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.58-66
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

로프 길이 변화를 고려한 크레인의 흔들림 제어에 관한 연구;Gain-Scheduling 기법에 의한 제어기 설계 (A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach)

  • 김영완;김영복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.631-636
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the experiment result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

Design of Fuzzy Controller Based on Fuzzy Model for Container Crane System

  • Kim, Maeng-Jun-;Geuntaek-Kang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1250-1253
    • /
    • 1993
  • The fuzzy control theory is applied to control a container crane, which is a very complicated system and controled manually by experts. As reference velocities of trolley and hoist of the container crane, we use those decided by experts, and express them by fuzzy model. We control the crane to follow the reference velocities by using fuzzy controllers. The fuzzy controllers are designed on the container crane. We made a model container crane and applied the suggested method to it

  • PDF

LQ 제어 기법을 이용한 컨테이너 크레인의 제어기 설계 (Design of a Container Crane Controller Using the LQ Control Technique)

  • 손정기;최재준;소명옥;남택근;권순재
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권5호
    • /
    • pp.544-553
    • /
    • 2002
  • The recent amount of container freight continuously has been increased, but the low efficiency of container crane causes jamming frequently in transportation and cargo handling at port. It is required that the working velocity and safety are improved by control of moving the trolley as quick as possible without large overshoot and any residual swing motion of container at the destination. In this paper, a LQ controller for a container crane is proposed to accomplish an optimal design of improved control system for minimizing the swing motion at destination. In this scheme a mathematical model for the system is obtained in state space form. Finally, the effectiveness of the proposed controller is verified through computer simulation.

자동화 컨테이너 터미널을 위한 컨테이너 트랜스퍼 크레인의 안티 스웨이 시스템;Part I - 기본 구조, 모델링, 제어 (Anti-Sway System of Container Transfer Crane for Automated Container Terminal : Part I - Basic Structure, Modeling and Control)

  • 박찬훈;김두형;신영재;박경택
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1112-1118
    • /
    • 2004
  • Automated container terminals have been developed over the world years and many countries are interested in them because the amount of containers exported or imported is rapidly increasing. The conventional container terminals were not designed to handle this kind of heavily many containers. They would face many structural problems soon or later, although they have been managed to do well so far. One of the most important things in automated container terminal is the handing equipments able to transfer many containers efficiently. Those are maybe automated transfer cranes, automatic guided vehicles and automated quay-side cranes. The word 'automated' means the equipment is operated without drivers and those equipments are able to work without any interruption in working schedule. Through the researches on the conventional transfer cranes, we decided that the structure of conventional transfer cranes is not proper in automated container terminal and it is not possible to handle so many container in limited time. Therefore we have been studying on the proper structure of the automated container for past several years and a new type of transfer cranes has been developed. Design concept and control method of the new crane are introduced and experimental results are presented in this paper.his paper.

M2M통신을 이용한 실시간 냉동컨테이너 제어 장비 (Real-time Reefer Container Control Device Using M2M Communication)

  • 문영식;최성필;이은규;김태훈;이병하;김재중;최형림
    • 한국정보통신학회논문지
    • /
    • 제18권9호
    • /
    • pp.2216-2222
    • /
    • 2014
  • 최근 냉동컨테이너를 이용한 물동량이 계속적으로 증가하고 있는 추세에서 운송 중 냉동컨테이너의 지속적인 관리가 요구되고 있다. 하지만 현재 냉동컨테이너 모니터링은 물류 전 구간이 아닌 터미널 및 해상 운송 중 선박 내에서만 가능하며, 트럭 또는 기차를 이용하는 육상운송 구간에서는 냉동컨테이너의 모니터링이 이루어지지 않고 있다. 이는 국제해사 기구에서 권고하고 있는 PCT를 이용한 냉동컨테이너 모니터링 방법 또는 TCP/IP, RFID 통신 등을 이용한 기존 냉동컨테이너 모니터링 방법들이 별도의 통신인프라 구축이 필요하기 때문이다. 본 논문에서는 이러한 문제점들을 해결하고 육상운송 구간에서 냉동컨테이너의 모니터링뿐만 아니라 제어까지 가능한 새로운 냉동컨테이너 제어 장비를 제안하고자 한다. 제안된 장비는 모든 냉동컨테이너에 부착되어 있는 데이터 포트를 이용하여 냉동컨테이너의 정보를 수집 후 M2M 통신 기술을 이용하여 별도 통신 인프라 구축 없이 서버로 정보를 전송한다. 또한 서버에서 설정한 냉동컨테이너의 온도 설정 등 제어 정보를 수신하여 냉동컨테이너의 동작 상태를 제어 할 수 있다.

컨테이너 크레인의 흔들림 억제 제어기 설계 (A Design of Anti-sway Controller for Container Crane)

  • 손정기;권순재;박한석
    • 동력기계공학회지
    • /
    • 제7권1호
    • /
    • pp.51-59
    • /
    • 2003
  • The recent amount of container freight continuously has been increased, but the low efficiency of container crane causes jamming frequently in transportation and cargo handling at port. It is required that the working velocity and safety are improved by control of moving the trolley as quick as possible without large overshoot and any residual swing motion of container at the destination. In this paper, a LQ Fuzzy controller for a container crane is proposed to accomplish an optimal design of improved control system for minimizing the swing motion at destination. In this scheme a mathematical model for the system is obtained in state space form. Finally, the effectiveness of the proposed controller is verified through computer simulation.

  • PDF

Fundamental Study of an Integrated Control Method for a Linear Motor Driven Container Crane System

  • An, Sang-Beak;Taniguchi, Yuki;Yamamoto, Shigehiro;Azukizawa, Teruo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권7호
    • /
    • pp.1060-1067
    • /
    • 2009
  • The authors have proposed a linear motor driven container crane system, in which the linear motor to drive trolley chassis is also used to control swaying motion of a hanging container. To utilize the proposed system, it is needed to develop a power saving control system for the linear drive system. In this paper, an integrated control system to minimize required electric power to drive a trolley chassis with the suppressed swaying motion of a hanged container, is proposed. The validity of the proposed control system is investigated by the simulation using Simulink.

불충분한 작동기를 가진 매니퓰레이터의 비선형제어 (Nonlinear Control of Residual Say of a Container Crane in the Perspective of Controlling an Underactuated System)

  • 김영민;홍금식;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.249-252
    • /
    • 1997
  • In this paper the sway-control problem of a container crane is investigated in the perspective of controlling an underactuated mechanical system. For fast loading/unloading of containers from the ship, quick suppression of the remaining swing motion of the container at the end of each trolley stroke is crucial. Known nonlinearities are fully incorporated by feedback linearization. Robustness is enhanced by variable structure control. Compared with the linear LQ control, much better performance can be obtained.

  • PDF