• 제목/요약/키워드: Continuous input current

검색결과 133건 처리시간 0.027초

ANN을 이용한 절삭성능의 예측과 ACO를 이용한 훈련 (Prediction of Machining Performance using ANN and Training using ACO)

  • 오수철
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.125-132
    • /
    • 2017
  • Generally, in machining operations, the required machining performance can be obtained by properly combining several machining parameters properly. In this research, we construct a simulation model, which that predicts the relationship between the input variables and output variables in the turning operation. Input variables necessary for the turning operation include cutting speed, feed, and depth of cut. Surface roughness and electrical current consumption are used as the output variables. To construct the simulation model, an Artificial Neural Network (ANN) is employed. With theIn ANN, training is necessary to find appropriate weights, and the Ant Colony Optimization (ACO) technique is used as a training tool. EspeciallyIn particular, for the continuous domain, ACOR is adopted and athe related algorithm is developed. Finally, the effects of the algorithm on the results are identified and analyzsed.

DSP를 이용한 부스트 컨버터의 전류 제어기 설계 및 구현 (Design and Implementation of a Current Controller for Boost Converters Using a DSP)

  • 이광운
    • 전력전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.259-265
    • /
    • 2012
  • This paper introduces a method for design and implementation of a current controller for boost converter operating in continuous conduction mode (CCM) using a digital signal processor (DSP). A Proportional-Integral (PI) type current controller outputs an average voltage command for inductor, used in the input side of the boost converter, and the duty-ratio of PWM (pulse width modulation) signal for switching device is directly calculated from the average voltage command. The gains of the PI current controller are selected such that the current response characteristics are the same as those of a first-order low-pass filter. The proposed current control scheme is implemented using a DSP based on fixed-point math operations and an experimental study has been performed to validate the proposed method.

Analysis and Design of a Single-Phase Tapped-Coupled-Inductor Boost DC-DC Converter

  • Gitau, Michael Njoroge;Mwaniki, Fredrick Mukundi;Hofsajer, Ivan W.
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.636-646
    • /
    • 2013
  • A single-phase tapped-inductor boost converter has been proposed previously. However, detailed characterization and performance analysis were not conducted. This paper presents a detailed characterization, performance analysis, and design expressions of a single-phase tapped-coupled-inductor boost converter. Expressions are derived for average and RMS input current as well as for RMS input and output capacitor current ripple. A systematic approach for sizing the tapped-coupled inductor, active switch, and output diode is presented; such approach has not been reported in related literature. This study reveals that sizing of the inductor has to be based on current ripple requirement, turns ratio, and load. Conditions that produce discontinuous inductor current are also discussed. Analysis of a non-ideal converter operating in continuous conduction mode is also conducted. The expression for the voltage ratio considering the coupling coefficient is derived. The suitability of the converter for high-voltage step-up applications is evaluated. Factors that affect the voltage boost ratio are also identified. The effects of duty ratio and load variation on the performance of the converter are also investigated. The theoretically derived characteristics are validated through simulations. Experimental results obtained at a low power level are included to validate the analytical and simulation results. A good agreement is observed among the analytical, simulation, and experimental results.

Compensation Technique for Current Sensorless Digital Control of Bridgeless PFC Converter under Critical Conduction Mode

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2310-2318
    • /
    • 2018
  • Critical conduction mode (CRM) operation is more efficient than continuous conduction mode (CCM) operation at low power levels because of the valley switching of switches and elimination of the reverse recovery losses of boost diodes. When using a sensorless digital control method, an error occurs between the actual and the estimated current. Because of the error, it operates as CCM or discontinuous conduction mode (DCM) during CRM operation and also has an adverse effect on THD of input current. In this paper, a current sensorless technique is presented in an inverter system using a bridgeless boosted power factor correction converter, and a compensation method is proposed to reduce CRM calculation error. The validity of the proposed method is verified by simulation and experiment.

유도가열 시스템을 위한 새로운 전류형 풀-브릿지 공진형 인버터 설계 (Design of New Current Full-Bridge Resonant Inverter for Induction Heating System)

  • 이상훈;임상길;송성근
    • 조명전기설비학회논문지
    • /
    • 제26권7호
    • /
    • pp.59-69
    • /
    • 2012
  • There are two types of inverters that are generally used in induction heating systems: voltage type inverters and high-frequency half-bridge inverters. This paper proposes a new resonant inverter for induction heating systems using the current type full-bridge method. The proposed method can remove capacitors at the input end, and enables unity power factor operation by preventing phase differences of voltage and current. Furthermore, Zero Voltage Switching (ZVS) which is in tune with current type inverter can be adopted and continuous power adjustment is possible through duty ratio changes and frequency modulation in switching operation. Simulations and experiments showed that the proposed current type full-bridge resonant inverter could be used for unity power factor control and ZVS operation in induction heating systems.

Half Load-Cycle Worked Dual Input Single Output DC/AC Inverter

  • Chen, Rong;Zhang, Jia-Sheng
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1217-1223
    • /
    • 2014
  • A novel half load-cycle worked dual input single output (DISO) DC/AC inverter is presented. The basic circuit consists of a dual buck regulator, which works in continuous current mode. The working principle of DISO DC/AC inverter has been used. The control method applied for half load-cycle worked DISO DC/AC inverter has been studied. The control effects of the open-loop proportional control and closed-loop proportional-integral control are compared by using PSIM software. The parameters are adopted in the realistic simulation and experiment test. Moreover, the waveforms, such as voltage of modulation reference signal and output voltage, were given. The simulation and experiment results proved that the half load-cycle worked DISO DC/AC inverter could achieve good performance, gain a line frequency of 50 Hz, and verify the correctness of theoretical analysis.

마그네트론 구동용 고역률 부스트 입력 방식의 공진형 전원장치 (Boost Input type High Power Factor Resonant Power Supply for driving Magnetron Device)

  • 정진범;연재을;김회준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1078-1080
    • /
    • 2003
  • This paper proposes the boost input type resonant power supply for driving the magnetron device of the high-capacity microwave oven. Circuit topology of the proposed power supply is the boost input type resonant converter which uses the resonance between transformer leakage inductance and resonance capacitance. Proposed power supply obtains high power factor more than 98% through continuous current mode pulse width modulation. To verify the validity of the proposed power supply, operation principle in the steady state is analyzed and experimental results are presented.

  • PDF

전압 리플 추정을 고려한 단상 PWM 컨버터의 순시치 제어 (Instantaneous Control of a Single-phase PWM Converter Considering the Voltage Ripple Estimate)

  • 김만기;이우철;현동석
    • 전력전자학회논문지
    • /
    • 제2권2호
    • /
    • pp.29-34
    • /
    • 1997
  • 본 논문에서는 단상 PWM 컨버터의 입력전류 제어계와 출력전압 제어계의 안정한 PI 이득을 설계하고 DSP를 이용하여 순시 제어기를 구현한다. DC link 전압 제어기는 연속영역에서 설계하여도 무방하나 입력전류 제어계는 이산화 영향을 무시할 수 없으므로 입력전류 제어계를 연산 시간을 고려하여 이산 영역에서 전달 함수를 구하여 설계한다. 또한 리플전압 추정 루틴을 통하여 실제 커패시터의 정전용량을 알아내는 알고리듬을 제시하고 이 알고리듬에 의하여 DC link 정전 용량을 과도상태에서도 추정해 낼수 있음을 보인다. 실험에 의하여 입력역률 99%와 부하급변시 전압 변동률 $\pm$5% 이하의 결과를 얻었다.

  • PDF

단일 스위치와 전압 체배 회로를 이용하는 고변압비와 낮은 전압 스트레스를 가진 새로운 비절연형 DC-DC 컨버터 토폴로지 (Novel Non-Isolated DC-DC Converter Topology with High Step-Up Voltage Gain and Low Voltage Stress Characteristics Using Single Switch and Voltage Multipliers)

  • Tran, Manh Tuan;Amin, Saghir;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.83-85
    • /
    • 2019
  • The use of high voltage gain converters is essential for the distributed power generation systems with renewable energy sources such as the fuel cells and solar cells due to their low voltage characteristics. In this paper, a high voltage gain topology combining cascode Inverting Buck-Boost converter and voltage multiplier structure is introduced. In proposed converter, the input voltage is connected in series at the output, the portion of input power is directly delivered to the load which results in continuous input current. In addition, the voltage multiplier stage stacked in proper manner is not only enhance high step-up voltage gain ratio but also significantly reduce the voltage stress across all semiconductor devices and capacitors. As a result, the high current-low voltage switches can be employed for higher efficiency and lower cost. In order to show the feasibility of the proposed topology, the operation principle is presented and the steady-state characteristic is analyzed in detail. A 380W-40/380V prototype converter was built to validate the effectiveness of proposed converter.

  • PDF

전류형 GTO 컨버터의 최적제어 PWM 선형화기법 (Linearized Optimal PWM Techniques for Current Source GTO Converter)

  • 팽성일;채경훈;최재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.426-428
    • /
    • 1997
  • This paper presents the linearized optimal PWM techniques for current source GTO converter. This proposed method is to linearize an optimal PWM modulation strategy so that the turn-on/off-periods of the GTO switches can be computed on-line in real-time for any modulation index. This allows the rapid and continuous regulation of the DC output current while producing the sinusoidal AC input current waveform and unit power factor.

  • PDF