• Title/Summary/Keyword: Continuous input current

Search Result 133, Processing Time 0.027 seconds

Instantaneous Control of a Single-phase PWM Converter Considering the Voltage Ripple Estimate (전압 리플 추정을 고려한 단산 PWM 컨버터의 순시치 제어)

  • 김만기;이우철;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.27-33
    • /
    • 1997
  • In this paper, instantaneous controller of a single-phase PWM converter is realized using DSP. The stable PI gain of the input current and the DC link voltage control system is designed. The DC link voltage control system can be designed in continuous-time domain. But as for the input current control system, the descretizing effect cannot be ignored so it must be designed in descrete-time domain considering the calculation time. The capacitance estimating algorithm which can be acquired through the ripple voltage is proposed. By this algorithm the DC link capacitance can be estimated even under the transient state. Experimental results show the input power factor of 99.1% and the voltage variation rate of $\pm$5% according to the load variation.

  • PDF

Slope Compensation Design of Buck AC/DC LED Driver Based on Discrete-Time Domain Analysis (이산 시간 영역 해석에 기반한 벅 AC/DC LED 구동기의 슬로프 보상 설계)

  • Kim, Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.207-214
    • /
    • 2019
  • In this study, discrete-time domain analysis is proposed to investigate the input current of a buck AC/DC light-emitting diode (LED) driver. The buck power factor correction converter can operate in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). Two discontinuous and two continuous conduction operating modes are possible depending on which event terminates the conduction of the main switch in a switching cycle. All four operating modes are considered in the discrete-time domain analysis. The peak current-mode control with slope compensation is used to design a low-cost AC/DC LED driver. A slope compensation design of the buck AC/DC LED driver is described on the basis of a discrete-time domain analysis. Experimental results are presented to confirm the usefulness of the proposed analysis.

Flow Actuation by DC Surface Discharge Plasma Actuator in Different Discharge Modes

  • Kim, Yeon-Sung;Shin, Jichul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.339-346
    • /
    • 2015
  • Aerodynamic flow control phenomena were investigated with a low-current DC surface discharge plasma actuator. The plasma actuator was found to operate in three different discharge modes with similar discharge currents of about 1 mA or less. Stable continuous DC discharge without audible noise was obtained at higher ballast resistances and lower discharge currents. However, even with continuous DC power input, a low-frequency self-pulsed discharge was obtained at lower ballast resistances, and a high-frequency self-pulsed discharge was obtained at higher set-point currents and higher ballast resistances, both with audible noise. The Schlieren image reveals that the low-frequency self-pulsed mode produces a synthetic jet-like flow implying that a gas heating effect plays a role, even though the discharge current is small. The high-frequency self-pulsed mode produces pulsed jets in a tangent direction, and the continuous DC mode produces a steady straight pressure wave. Particle image velocimetry (PIV) images reveal that the induced flow field by the low-frequency self-pulsed mode has flow propagating in the radial direction and centered between the electrodes. The high-frequency self-pulsed mode and continuous DC mode produce flow from the anode to the cathode. The perturbed region downstream of the cathode is larger in the high-frequency self-pulsed mode with similar maximum speeds.

On-line Techniques of SHE-PWN for Current Source GTO Converter (전류형 GTO 컨버터의 SHE-PWM 실시간제어기법)

  • 최재호;팽성일;채경훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.523-530
    • /
    • 1999
  • This paper presents the on -line techniques of SHE-PvVI\I for GTO current source converter. The look-up t table is linearized with this proposed method so that the tum-on/off periods of the GTO switches can be c computed in real-time for any modulation index. This allows the rapid and continuous regulation of the DC O output current while producing the sinusoidal AC input current waveform and unity power factor. The l linearized S}lE-PW~I technique and the high power factor control scheme are Prolxlsed and their‘ performance i is tested analytically. The validity of this proposed technique is well verified through the simulation and e experimental results.

  • PDF

Performance analysis of EIT bladder monitoring system according to input current patterns (주입전류 패턴에 따른 EIT 방광 모니터링 시스템의 성능분석)

  • Han, You-Jung;Khambampati, Anil Kumar;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.164-172
    • /
    • 2019
  • Current clinical methods for diagnosing urination disorder are invasive, expensive, and very inconvenient to perform continuous monitoring. EIT is a non-invasive technique that injects electrical current through an external electrodes and measures the induced voltage to visualize the internal electrical (impedance) characteristics, which makes it possible to monitor bladder conditions with low cost. The signal characteristics of the measured voltage data changes according to the current pattern injected through the electrode and affects reconstruction performance. In this paper, image reconstruction performance is compared and analyzed according to the injected current patterns to maximize the sensitivity to the variation of bladder size.

Design of a BJT low-voltge low-frequency filter using current amplifier (전류증폭기를 이용한 BJT 저전압 저주파 필터 설계)

  • 안정철;최석우;윤창훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.5
    • /
    • pp.33-40
    • /
    • 1998
  • In this paper, a design of current-mode continuous-time filters for low voltage and low frequency applications using complementary bipolar current mirrors is presented. The proposed current-mode filters consist of simple bipolar current mirrors and capacitors and are quite suitable for monolithic integration. Since the design method of the proposed current-mode filters are based on the integrator type of realization, it can be used for a wide range of applications. Since the input impedance of simple bipolar current mirror is small, in this paper, negative feedback amplifier is used to realize is designed by cascade method. The cutoff frequency of the designed filter can be easily tunable by the DC controlling current from 60kHz to 120kHz. The characteristics of the designed current-mode filters are simulated and examined by SPICE using standard bipolar transistor parameters.

  • PDF

A Continuous Conduction mode/Critical Conduction Mode Active Power Factor Correction Circuit with Input Voltage Sensor-less Control (입력전압을 감지하지 않는 전류연속/임계동작모드 Active Power Factor Correction Circuit)

  • Roh, Yong-Seong;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.151-161
    • /
    • 2013
  • An active power factor correction (PFC) circuit is presented which employs a newly proposed input voltage sensor-less control technique operated in continuous conduction mode (CCM) and critical conduction mode (CRM). The conventional PFC circuit with input voltage sensor-less control technique degrades the power factor (PF) under the light load condition due to DCM operation. In the proposed PFC circuit, the switching frequency is basically 70KHz in CCM operation. In light load condition, however, the PFC circuit operates in CRM and the switching frequency is increased up to 200KHz. So CCM/CRM operation of the PFC circuit alleviates the decreasing of the PF in light load condition. The proposed PFC controller IC has been implemented in a $0.35{\mu}m$ BCDMOS process and a 240W PFC prototype is built. Experimental results shows the PF of the proposed PFC circuit is improved up to 10% from the one employing the conventional CCM/DCM dual mode control technique. Also, the PF is improved up to 4% in the light load condition of the IEC 61000-3-2 Class D specifications.

A Study on the High Power-Factor AC/DC converter using Resonant Auxiliary Circuit (공진형 보조 회로를 이용한 고역률 AC/DC 컨버터에 관한 연구)

  • Han, Dae-Hee;Kim, Yang;Baek, Soo-Hyun;Bae, Jin-Yang;Kim, Pil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1110-1113
    • /
    • 2002
  • A Single-Stage Single-Switch power-factor- correction(PFC) AC/DC Converter with universal input is presented in this paper. The PFC Converter can be achieved based upon the continuous current mode(CCM). The switch has less current and voltage stresses over a wide range of load variation so that a low voltage rating device can be used. The presented converter features high power factor high efficiency, and low cost. An 90W prototype was implemented to show that it has 70% efficiency with low voltage stress over universal line input.

  • PDF

A New High Efficiency and Low Pronto On-Board DC/DC Converter for Digital Car Audio Amplifier

  • Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.601-605
    • /
    • 2004
  • A new high efficiency and low profile on-board DC/DC converter for digital car audio amplifier is proposed. The proposed converter shows the continuous input current, no DC excitation current of the transformer, the minimized electro-magnetic interference (EMI), no output inductor, and the low voltage stress of the secondary rectifier diodes. The 60W industrial sample of the proposed converter is implemented for digital car audio amplifier and the measured efficiency is $88.3\%$ at nominal input voltage.

  • PDF

Lyapunov Based Adaptive-Robust Control of the Non-Minimum phase DC-DC Converters Using Input-Output Linearization

  • Salimi, Mahdi;Zakipour, Adel
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1577-1583
    • /
    • 2015
  • In this research, a combined adaptive-robust current controller is developed for non-minimum-phase DC-DC converters in a wide range of operations. In the proposed nonlinear controller, load resistance, input voltage and zero interval of the inductor current are estimated using developed adaptation rules and knowing the operating mode of the converter for the closed-loop control is not required; hence, a single controller can be employed for a wide load and line changes in discontinuous and continuous conduction operations. Using the TMS320F2810 digital signal processor, the experimental response of the proposed controller is presented in different operating points of the buck/boost converter. During transition between different modes of the converter, the developed controller has a better dynamic response compared with previously reported adaptive nonlinear approach. Moreover, output voltage steady-state error is zero in different conditions.