• 제목/요약/키워드: Continuous flow reactor

검색결과 155건 처리시간 0.033초

Candida utilis를 이용한 furfural 함유 식품가공 폐수의 처리 (Treatment of Food Processing Wastewater bearing Furfural by Candida utilis)

  • 박기영;정진영
    • KSBB Journal
    • /
    • 제18권4호
    • /
    • pp.272-276
    • /
    • 2003
  • 혐기성 미생물에 저해가 되는 물질을 포함하는 고농도 폐수의 효모에 의한 처리에 관하여 연구하였다. 폐수는 furfural 부산물이 배출되는 식품가공 공정의 배출폐수를 대상으로 실험하였다. 본 연구에서는 호기성 효모의 일종인 Candida utilis가 실험에 적용되었다. 회분 실험을 통하여 본 폐수는 혐기성 미생물에 저해 영향을 주는 것으로 밝혀졌다. 본 공정의 최적 온도는 25에서 45$^{\circ}C$이었으며 효모의 성장에 적당한 pH는 4에서 8사이임을 알 수 있었다. 연속실험 결과, 체류시간 1일 이상에서 COD가 90% 이상 제거되었다. 그러나 유출수 중의 유기물 농도는 여전히 다소 높은 것으로 조사되었다. 따라서 동력학적으로 해석하여 추정한 결과 남은 유기물은 대부분은 용존 미생물 생성물 (SMP, Soluble Microbial Product)에서 기인하는 것으로 판단되었다.

대도시 내 BTB HVDC 투입 시 운전점 결정 방안 (Determination of BTB HVDC Operating Point in Metropolitan area)

  • 이재형;윤민한;한창희;장길수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.331-332
    • /
    • 2015
  • Since $20^{th}$ century, along with the rapid industrial advancement, the concentrated urban development in specific large cities have made people migrate to those cities, thus causing problems in the power system stability. In case of Korea, more than 40% of the power system demand comes from the consumers in Seoul Metropolitan area and the rate is expected to increase. With the continuous increase of power demand, in order to meet the demand for system reliability improvement, the power system was multi-looped for reliability enhancement, the problem of fault current happened. In this situation, there are several methods for fault current reduction likes current limiting reactor, replacing circuit breaker, splitting busses, etc. But these methods reached its limit, power system needs more fundamental solutions such as grid segmentation. In this paper, we assume grid segmentation already has been progressed using VSC BTB HVDC. Then, this paper discusses operating point of HVDC in metropolitan area considering loss minimization and handy flow control. The simulation is proceeded on 2027 KEPCO system.

  • PDF

$TiO_2$-Ni inverse Catalyst for CRM Reactions with High Resistance to Coke Formation

  • Seo, Hyun-Ook;Sim, Jong-Ki;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.267-267
    • /
    • 2012
  • $TiO_2$-Ni inverse catalysts were prepared using atomic layer deposition (ALD) process and catalytic $CO_2$ reforming of methane (CRM) reaction over catalysts (either bare Ni or $TiO_2$ coated-Ni particles) were performed using a continuous flow reactor at $800^{\circ}C$. $TiO_2$-Ni inverse catalyst showed higher catalytic reactivity at initial stage of CRM reactions at $800^{\circ}C$ comparing to bare Ni catalysts. Moreover, catalytic activity of $TiO_2$/Ni catalyst was kept high during 13 hrs of the CRM reactions at $800^{\circ}C$, whereas deactivation of bare Ni surface was started within 1hr under same conditions. The results of surface analysis using SEM, XPS, and Raman showed that deposition of graphitic carbon was effectively suppressed in a presence of $TiO_2$ nanoparticles on Ni surface, thereby improving catalytic reactivity and stability of $TiO_2$/Ni catalytic systems. We suggest that utilizing decoration effect of metal catalyst with oxide nanoaprticles is of great potential to develop metal-based catalysts with high stability and reactivity.

  • PDF

Fabrication and Characterization of Titanate Nanotube Supported ZSM-5 Zeolite Composite Catalyst for Ethanol Dehydration to Ethylene

  • Wu, Liangpeng;Li, Xinjun;Yuan, Zhenhong;Chen, Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.525-530
    • /
    • 2014
  • Titanium dioxide nanotube supported ZSM-5 zeolite composite catalyst was fabricated by decorating ZSM-5 zeolite on the hydrothermally synthesized titanium dioxide via hydrothermal process and subsequent annealing. The catalyst was characterized by X-ray powder diffraction (XRD), Transmission electron microscopy (TEM) and Nitrogen adsorption-desorption (BET). The surface acidity of the catalyst was measured by means of Fourier transform infrared (FT-IR) spectrum of pyridine adsorption. And the catalytic activity for ethanol dehydration to ethylene was evaluated in a continuous flow fixed-bed reactor. Attributed to the increase of the effective surface acid sites caused by titanium dioxide nanotube as electron acceptor, titanium dioxide nanotube supported ZSM-5 zeolite composite catalyst exhibits strongly enhanced activity for ethanol dehydration to ethylene.

산소-플라즈마 방전을 이용한 수중의 페놀 제거 (Phenol Removal Using Oxygen-Plasma Discharge in the Water)

  • 박영식
    • 한국환경과학회지
    • /
    • 제22권7호
    • /
    • pp.915-923
    • /
    • 2013
  • Decomposition of non-biodegradable contaminants such as phenol contained in water was investigated using a dielectric barrier discharge (DBD) plasma reactor in the aqueous solutions with continuous oxygen bubbling. Effects of various parameters on the removal of phenol in aqueous solution with high-voltage streamer discharge plasma are studied. In order to choose plasma gas, gas of three types (argon, air, oxygen) were investigated. After the selection of gas, effects of 1st voltage (80 ~ 220 V), oxygen flow rate (2 ~ 7 L/min), pH (3 ~ 11), and initial phenol concentration (12.5 ~ 100.0 mg/L) on phenol degradation and change of $UV_{254}$ absorbance were investigated. Absorbance of $UV_{254}$ can be used as an indirect indicator of phenol degradation and the generation and disappearance of the non-biodegradable organic compounds. Removal of phenol and COD were found to follow pseudo first-order kinetics. The removal rate constants for phenol and COD of phenol were $5.204{\times}10^{-1}min^{-1}$ and $3.26{\times}10^{-2}min^{-1}$, respectively.

Simulation of oxygen mass transfer in fuel assemblies under flowing lead-bismuth eutectic

  • Feng, Wenpei;Zhang, Xue;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.908-917
    • /
    • 2020
  • Corrosion of structural materials presents a critical challenge in the use of lead-bismuth eutectic (LBE) as a nuclear coolant in an accelerator-driven system. By forming a protective layer on the steel surfaces, corrosion of steels in LBE cooled reactors can be mitigated. The amount of oxygen concentration required to create a continuous and stable oxide layer on steel surfaces is related to the oxidation process. So far, there is no oxidation experiment in fuel assemblies (FA), let alone specific oxidation detail information. This information can be, however, obtained by numerical simulation. In the present study, a new coupling method is developed to implement a coupling between the oxygen mass transfer model and the commercial computational fluid dynamics (CFD) software ANSYS-CFX. The coupling approach is verified. Using the coupling tool, we study the oxidation process of the FA and investigate the effects of different inlet parameters, such as temperature, flow rate on the mass transfer process.

Utilization of Waste Aluminium Foil as a Sacrificial Electrode for the Treatment of Wastewater

  • Perumalsamy, Rajagopal;Kumaran, Chithra;Rajamanickam, Vaishali
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.92-100
    • /
    • 2021
  • In this study, the use of waste food grade aluminium foil and mild steel as a sacrificial electrode in an electrocoagulation system was developed to remove reactive red 111 from wastewater. The effect of different parameters like pH, current density, electrode material, and different electrode configurations was investigated. Optimum operating conditions for maximum COD removal were determined as, 6 mA/㎠ current density and 30 min at 5 pH for aluminium foil and 7 pH for mild steel. Maximum COD reduction obtained at optimum conditions using monopolar 4 electrodes, monopolar 2 electrodes and bipolar electrode configuration were 96.5%, 89.3%, and 90.2% for Mild steel as a sacrificial electrode and 92.1%, 84.2%, and 88.6% for aluminium foil as a sacrificial electrode. The consumption of electrode and energy for both the electrodes of different configurations were calculated and compared. Using batch experimental data, a continuous-flow reactor was developed. Sludge analysis using Fourier Transform Infra-Red Spectroscopy (FTIR) analysis was done. Different adsorption kinetic models and isotherms were developed and it was found that pseudo second-order model and Langmuir isotherm fit best with the experimental data obtained.

메틸피라진으로부터 시아노피라진으로의 암옥시화반응에서의 산화 바나듐 촉매에 관한 연구 (A Study on the Vanadium Oxides Catalyst in the Ammoxidation of Methylpyrazine into Cyanopyrazine)

  • 권용승;박상언;이영길
    • 대한화학회지
    • /
    • 제34권5호
    • /
    • pp.445-451
    • /
    • 1990
  • 산화 바나듐(V$_2$O$_5$)이 알루미나에 담지된 촉매상에서 메틸피라진으로부터 시아노피라진으로의 암옥시화반응(Ammoxidation)을 연속흐름식 고정층 반응기에서 조사하였다. 알루미나에 담지된 산화 바나듐은 전처리의 환원온도에 따라 다양한 산화상태의 결정상을 형성하며, 이들 바나듐 산화물의 산화상태의 변화는 메틸피리진으로부터 시아노피라진으로의 반응활성에 영향을 준다. 알루미나에 10${\%}$ 산화 바나듐이 담지된 촉매를 600$^{\circ}C$ 수소기류하에서 2시간 환원처리하여 바나듐의 산화상태가 V$^{3+}$에 가까운, 즉 촉매상의 바나듐의 주된 결정상이 V$_2$O$_3$이며 V$_6$O$_{13}$및 V$_2$O$_4$(VO$_2$)가 공존할 때 메틸피라진으로부터 시아노피라진으로의 암옥시화반응에 최적의 반응활성과 선택도를 갖는 것으로 나타났다.

  • PDF

이중관형 연속 반응기에서 수증기-메탄 개질반응의 실험 및 CFD 시뮬레이션 (A Comparison with CFD Simulation and Experiment for Steam-methane Reforming Reaction in Double pipe Continuous Reactor)

  • 신동우;김래현
    • 에너지공학
    • /
    • 제22권2호
    • /
    • pp.226-236
    • /
    • 2013
  • 고온개질기를 이용한 수증기 메탄 개질반응에 대해 실험 및 전산해석 기법을 이용하여 실제 개질기의 효율 및 개질기의 형상의 변화에 따른 열 분포 및 내부 유동에 대해서 연구하였다. 수증기 개질에 대한 반응모델은 Xu & Froment에 의해 개발된 수증기 반응 모델을 사용하였고, 그 결과로 고온개질기내에서 일어나는 화학반응은 Steam Reforming(SR), Water Gas Shift(WGS), Direct Steam Reforming(DSR) 반응이 다른 반응을 지배한다고 가정하였다. 고온개질기를 이용한 수증기 메탄 개질 반응 실험 결과로는 Steam Carbon Ratio(SCR)이 증가함에 따라 수소 수득율 또한 증가하고 일산화탄소와 메탄은 감소하는것을 알 수 있었다. 또한 입구가 한 개인 디자인과 두 개인 디자인을 비교, 분석하였을 때 입구가 두 개인 개질기보다 입구가 한 개인 개질기에서 열 분포 및 내부유동, 수소 수득율이 우수하다는 결과를 얻게 되었다.

Fabrication of Meso/Macroporous Carbon Monolith and its Application as a Support for Adsorptive Separation of D-Amino Acid from Racemates

  • Park, Da-Min;Jeon, Sang Kwon;Yang, Jin Yong;Choi, Sung Dae;Kim, Geon Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1720-1726
    • /
    • 2014
  • (S)-Alanine Racemase Chiral Analogue ((S)-ARCA) was used as an efficient adsorbent for the selective separation of D-amino acids (D-AAs), which are industrially important as chiral building blocks for the synthesis of pharmaceutical intermediates. The organic phase, containing (S)-ARCA adsorbent and phase transfer reagents, such as ionic liquid type molecules (Tetraphenylphosphonium chloride (TPPC), Octyltriphenylphosponium bromide (OTPPBr)), were coated on the surfaces of mesoporous carbon supports. For the immobilization of chiral adsorbents, meso/macroporous monolithic carbon (MMC), having bimodal pore structures with high surface areas and pore volumes, were fabricated. The separation of chiral AAs by adsorption onto the heterogeneous (S)-ARCA was performed using a continuous flow type packed bed reactor system. The effects of loading amount of ARCA on the support, the molar ratio of AA to ARCA, flow rates, and the type of phase transfer reagent (PTR) on the isolation yields and the optical purity of product D-AAs were investigated. D-AAs were selectively combined to (S)-ARCA through imine formation reaction in an aqueous basic solution of racemic D/L-AA. The (S)-ARCA coated MMC support showed a high selectivity, up to 95 ee%, for the separation of D-type phenylalanine, serine and tryptophan from racemic mixtures. The ionic liquids TPPC and OTPPBr exhibited superior properties to those of the ionic surfactant Cetyltrimethyl ammonium bromide (CTAB), as a PTR, showing constant optical purities of 95 ee%, with high isolation yields for five repeated reuses. The unique separation properties in this heterogeneous adsorption system should provide for an expansion of the applications of porous materials for commercial processes.