Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01249

Utilization of Waste Aluminium Foil as a Sacrificial Electrode for the Treatment of Wastewater  

Perumalsamy, Rajagopal (Department of Chemical Engineering, A.C.Tech, Anna University)
Kumaran, Chithra (Department of Chemical Engineering, A.C.Tech, Anna University)
Rajamanickam, Vaishali (Department of Chemical Engineering, A.C.Tech, Anna University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.1, 2021 , pp. 92-100 More about this Journal
Abstract
In this study, the use of waste food grade aluminium foil and mild steel as a sacrificial electrode in an electrocoagulation system was developed to remove reactive red 111 from wastewater. The effect of different parameters like pH, current density, electrode material, and different electrode configurations was investigated. Optimum operating conditions for maximum COD removal were determined as, 6 mA/㎠ current density and 30 min at 5 pH for aluminium foil and 7 pH for mild steel. Maximum COD reduction obtained at optimum conditions using monopolar 4 electrodes, monopolar 2 electrodes and bipolar electrode configuration were 96.5%, 89.3%, and 90.2% for Mild steel as a sacrificial electrode and 92.1%, 84.2%, and 88.6% for aluminium foil as a sacrificial electrode. The consumption of electrode and energy for both the electrodes of different configurations were calculated and compared. Using batch experimental data, a continuous-flow reactor was developed. Sludge analysis using Fourier Transform Infra-Red Spectroscopy (FTIR) analysis was done. Different adsorption kinetic models and isotherms were developed and it was found that pseudo second-order model and Langmuir isotherm fit best with the experimental data obtained.
Keywords
COD; Modeling; Reactive Red 111; Kinetics; Aluminium Foil;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Naje AS, Chelliapan S, Zakaria Z, Abbas SA, Int. J. Electrochem. Sci., 2015, 10(7), 5924-41.
2 Yang T, Qiao B, Li GC, Yang QY, Desalination., 2015, 363, 134-143.   DOI
3 Fajardo AS, Rodrigues RF, Martins RC, Castro LM, Quinta-Ferreira RM, Chem. Eng. J., 2015, 275, 331-341.   DOI
4 Zaidi S, Chaabane T, Sivasankar V, Darchen A, Maachi R, Msagati TA, Arabian J. Chem., 2019, 12(8), 2798-2809.   DOI
5 Reilly M, Cooley AP, Tito D, Tassou SA, Theodorou MK, Energy Procedia., 2019, 161, 343-351.   DOI
6 Varank G, Erkan H, Yazycy S, Demir A, Engin G, Int. J. Environ. Res., 2014, 8(1), 165-180.
7 Khatod I, Int. J. ChemTech Res., 2013, 5(2), 572-577.
8 Oncel MS, Muhcu A, Demirbas E, Kobya M, J. Environ. Chem. Eng., 2013, 1(4), 989-995.   DOI
9 Lu J, Li Y, Yin M, Ma X, Lin S, Chem. Eng. J., 2015, 267, 86-92.   DOI
10 Camcioglu S, Ozyurt B, Hapoglu H. Effect of process control on optimization of pulp and paper mill wastewater treatment by electrocoagulation. Process Saf. Environ. Prot., 2017, 111, 300-319.   DOI
11 Papadopoulos KP, Argyriou R, Economou CN, Charalampous N, Dailianis S, Tatoulis TI, Tekerlekopoulou AG, Vayenas DV, J. Environ. Manage., 2019, 237, 442-448.
12 Bener S, Bulca O, Palas B, Tekin G, Atalay S, Ersoz G, Process Saf. Environ. Prot., 2019, 129, 47-54.   DOI
13 Merzouk B, Gourich B, Sekki A, Madani K, Vial C, Barkaoui M, Chem. Eng. J., 2009, 149(1-3), 207-214.   DOI
14 Nordin N, Amir SF, Riyanto, Othman M.R, Int. J. Electrochem. Sci., 2013, 8(9), 11403-11415.
15 Nunez J, Yeber M, Cisternas N, Thibaut R, Medina P, Carrasco C, J. Hazard. Mater., 2019, 371, 705-711.   DOI
16 Damaraju M, Bhattacharyya D, Panda TK, Kurilla KK, J. Clean. Prod., 2020, 245, 118693.   DOI
17 Demirci Y, Pekel LC, Alpbaz M, Int. J. Electrochem. Sci., 2015, 10(3), 2685-2693.
18 Tchamango SR, Darchen A, J. Environ. Chem. Eng., 2018, 6(4), 4546-4554.   DOI
19 Moussavi G, Khosravi R, Farzadkia M, Desalination., 2011, 278, 288-294   DOI
20 Kobya M, Demirbas E, Dedeli A, Sensoy MT, J. Hazard. Mater., 2010, 173(1-3), 326-334.   DOI
21 Kobya M, Can OT, Bayramoglu M, J. Hazard. Mater., 2003, 100(1-3), 163-178.   DOI
22 Danial R, Sobri S, Abdullah LC, Mobarekeh MN, Chemosphere., 2019, 233, 559-569.   DOI
23 Deb TK, Majumdar S, Int. J. of Environ. Bioenergy., 2013, 6(2), 96-116.
24 Shahreza SO, Mokhtarian N, Behnam S, Environ. Technol., 2020, 41(7), 890-900.   DOI
25 Saravanan M, Sambhamurthy NP, Sivarajan M, CLEAN-Soil, Air, Water., 2010, 38(5-6), 565-571.   DOI
26 Bilinska L, Blus K, Gmurek, M, Ledakowicz S, Chem. Eng. J., 2019, 358, 992-1001.   DOI
27 Dalvand A, Gholami M, Joneidi A, Mahmoodi NM, Clean - Soil, Air, Water., 2011, 39(7), 665-672.   DOI
28 Nandi BK, Patel S, Arab. J. Chem., 2017, 10, S2961-S2968.   DOI
29 Azarian GG, Nematollahi D, Rahmani AR, Godini K, Bazdar M, Zolghadrnasab H, Avicenna J. Environ. Health Eng., 2017, 1(1), 33-38.
30 Pajootan E, Arami M, Mahmoodi NM, J. Taiwan Inst. Chem. Eng., 2012, 43(2), 282-290.   DOI
31 Merzouk B, Gourich B, Sekki A, Madani K, Vial C, Barkaoui M, Chem. Eng. J., 2009, 149(1-3), 207-214.   DOI
32 Zhang S, Shao Y, Liu J, Aksay IA, Lin Y, ACS Appl. Mater. Interfaces., 2011, 3(9), 3633-3637.   DOI
33 Qiu M, Shou J, Ren P, Jiang K, J. Chem. Pharm. Res., 2014, 6(7), 2046-2051.
34 Hussein FH, Abass TA, Int. J. Chem. Sci., 2010, 8(3), 1409-1420.
35 Garcia-Garcia P, Arroyo-Lopez FN, Rodriguez-Gomez F, Sep. Purif. Technol., 2014, 133, 227-235.   DOI
36 Hakizimana JN, Gourich B, Chafi M, Stiriba Y, Vial C, Drogui P, Naja J, Desalination., 2017, 404, 1-21.   DOI
37 Song P, Yang Z, Zeng G, Yang X, Xu H, Wang L, Xu R, Xiong W, Ahmad K, Chem. Eng. J., 2017, 317, 707-725.   DOI
38 Kobya M, Demirbas E, Ulu F, J. Environ. Chem. Eng., 2016, 4(2), 1484-1494.   DOI
39 Changmai M, Pasawan M, Purkait MK, Sep. Purif. Technol., 2019, 210, 463-472.   DOI
40 Silva JF, Graca NS, Ribeiro AM, Rodrigues AE, Sep. Purif. Technol., 2018, 197, 237-243.   DOI