• Title/Summary/Keyword: Continuous flood

Search Result 87, Processing Time 0.022 seconds

Mega Flood Simulation Assuming Successive Extreme Rainfall Events (연속적인 극한호우사상의 발생을 가정한 거대홍수모의)

  • Choi, Changhyun;Han, Daegun;Kim, Jungwook;Jung, Jaewon;Kim, Duckhwan;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.76-83
    • /
    • 2016
  • In recent, the series of extreme storm events were occurred by those continuous typhoons and the severe flood damages due to the loss of life and the destruction of property were involved. In this study, we call Mega flood for the Extreme flood occurred by these successive storm events and so we can have a hypothetical Mega flood by assuming that a extreme event can be successively occurred with a certain time interval. Inter Event Time Definition (IETD) method was used to determine the time interval between continuous events in order to simulate Mega flood. Therefore, the continuous extreme rainfall events are determined with IETD then Mega flood is simulated by the consecutive events : (1) consecutive occurrence of two historical extreme events, (2) consecutive occurrence of two design events obtained by the frequency analysis based on the historical data. We have shown that Mega floods by continuous extreme rainfall events were increased by 6-17% when we compared to typical flood by a single event. We can expect that flood damage caused by Mega flood leads to much greater than damage driven by a single rainfall event. The second increase in the flood caused by heavy rain is not much compared to the first flood caused by heavy rain. But Continuous heavy rain brings the two times of flood damage. Therefore, flood damage caused by the virtual Mega flood of is judged to be very large. Here we used the hypothetical rainfall events which can occur Mega floods and this could be used for preparing for unexpected flood disaster by simulating Mega floods defined in this study.

한반도 기후 변화에 따른 수해 및 빗물 저류터널(Flood Drainage Tunnel) 건설의 세계 동향 검토 연구

  • Choe, Jae-Hwa;Ji, Wang-Ryul
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.14 no.2
    • /
    • pp.31-37
    • /
    • 2012
  • In the circumstances being continuous the unusual weather in the world, the city of Seoul has been devastating flood damage in July 2011, because of the heavy rainfalls. Along with expensive repairs to property, thousands of flood victims occurred; it is difficult to estimate the direct and indirect economic damages in city. Recently, as a part of the flood protecting measures, there are being discussed about the deep underground flood drainage tunnel, underground regulating reservoirs, permeable pavement, infiltration facility, river improvements, diversion channel, sewer pipe and ditch improvement and so on. Therefore, it is useful to make the plan of flood protecting measures more and more cost-effective and rational methods by considering the similar flood measures and constructions in the mega cities like Seoul.

  • PDF

Derivation of Design Flood Using Multisite Rainfall Simulation Technique and Continuous Rainfall-Runoff Model

  • Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.540-544
    • /
    • 2009
  • Hydrologic pattern under climate change has been paid attention to as one of the most important issues in hydrologic science group. Rainfall and runoff is a key element in the Earth's hydrological cycle, and associated with many different aspects such as water supply, flood prevention and river restoration. In this regard, a main objective of this study is to evaluate design flood using simulation techniques which can consider a full spectrum of uncertainty. Here we utilize a weather state based stochastic multivariate model as conditional probability model for simulating the rainfall field. A major premise of this study is that large scale climatic patterns are a major driver of such persistent year to year changes in rainfall probabilities. Uncertainty analysis in estimating design flood is inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. A comprehensive discussion on design flood under climate change is provided.

  • PDF

Analysis on Hydrologic Stability of Agricultural Reservoir Using Probable Maximum Flood (최대가능홍수량 적용에 따른 농업용 저수지의 수문학적 안정성 분석)

  • Kim, Sang-Woo;Maeng, Seung-Jin
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.28-34
    • /
    • 2010
  • This study re-exams hydrologic stability on spillway outlet capacity of agricultural reservoirs using hydrologic data with current rainfall condition instead of project hydrologic data applied at design on Backgok reservoir located in Chungbuk province. It is concluded that Backgok reservoir is not hydrologically stable and therefore structural measures including the extension of spillway and non structural measures should be taken. Continuous basic plan for river maintenance including additional bank reinforcement to bottom river shall be carried out. Due to high peak flood with more than 290% compared to 200 year frequency probability flood which was design standard of the past in view of the results of calculating PMF according to revised design standard for reservoirs, there could a problem for securing rationality in case of applying PMF with design flood. Therefore, hydrological stability, construction, and maintenance cost shall be synthetically studied and reasonal application shall be made if the decision is made on applying PMF with design flood.

  • PDF

Development of Continuous Rainfall-Runoff Model for Flood Forecasting on the Large-Scale Basin (대유역 홍수예측을 위한 연속형 강우-유출모형 개발)

  • Bae, Deg-Hyo;Lee, Byong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.51-64
    • /
    • 2011
  • The objective of this study is to develop a continuous rainfall-runoff model for flood prediction on a large-scale basin. For this study, the hourly surface runoff estimation method based on the variable retention parameter and runoff curve number is developed. This model is composed that the soil moisture to continuous rainfall can be simulated with applying the hydrologic components to the continuous equation for soil moisture. The runoff can be simulated by linking the hydrologic components with the storage function model continuously. The runoff simulation to large basins can be performed by using channel storage function model. Nakdong river basin is selected as the study area. The model accuracy is evaluated at the 8 measurement sites during flood season in 2006 (calibration period) and 2007~2008 (verification period). The calibrated model simulations are well fitted to the observations. Nash and Sutcliffe model efficiencies in the calibration and verification periods exist in the range of 0.81 to 0.95 and 0.70 to 0.94, respectively. The behavior of soil moisture depending on the rainfall and the annual loadings of simulated hydrologic components are rational. From this results, continuous rainfall-runoff model developed in this study can be used to predict the discharge on large basins.

Development and Hydraulic Characteristics of Continuous Block System in River Bank Protection (I) - Development and Application Review through Hydraulic Model Test - (일체형 식생호안블록 시스템 개발 및 수리특성 연구(I) -일체형 호안블록 개발 및 수리모형실험을 통한 적용성 검토-)

  • Jang, SukHwan
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.87-97
    • /
    • 2008
  • This research focused on development and application feasibility for the coalesced continuous block system in river bank protection. Most of block systems in river bank are pre cast type and have some difficulties against high velocity flood condition or high pressure load, however, the continuous block system can be applied to flood damage recover as well as environmental vegetation block system in river bank. For the application review and analysis of hydraulic condition for this block system, hydraulic physical modeling was carried out. The physical model was built as a scale of 1:50 by Froude similitude measuring the water levels and the water velocities for vegetation application or not. In consequence, the water velocities were observed to decrease meanly 10.1%, and the water depths were to increase meanly 17.8% in case of the of design flood, $Q=200m^3/sec$. To verify the hydraulic physical modeling, the numerical modeling should be conducted for a close examination of vegetation application by one or two dimensional numerical analysis as a next study.

  • PDF

Development of Flood Risk Index using causal relationships of Flood Indicators (홍수지표의 인과관계를 이용한 홍수위험지수 개발)

  • Lim, Kwang Suop;Choi, Si Jung;Lee, Dong Ryul;Moon, Jang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.61-70
    • /
    • 2010
  • This research presents a methodology to define and apply appropriate index that can measure the risk of regional flood damage. Pressure-State-Response structure has been used to develop the Flood Risk Index(FRI), which allows for a comparative analysis of flood risk assessment between different sub-basins. FRI is a rational assessment method available to improve disaster preparedness and the prevention of losses. The pressure and state index for flood at 117 sub-basins from the year 1980s until the t 10s showed proportional relations, but state index did not decrease even though response index increased. This shows that pressures for flood damage relatively exceed countermeasure for flood. Thus this means we need to strengthen design criteria for flood countermeasure in the future. The FRI is gradually going down in consequence of continuous flood control projects. Flood risk of Han River and Nakdong River area is relatively lower than that of Geum, Seumjin, and Youngsan River area.

Analysis of Flooded Areas for Cadastral Information-Based Rainfall Frequencies (지적정보 기반의 강우빈도별 침수지역 분석)

  • Min, Kwan-Sik;Lee, Hyung-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.101-110
    • /
    • 2010
  • The increased occurrence of flooding due to typhoons and local rainfall has necessitated damage prevention through the systematic construction of damage history and quantitative analysis of flood prediction data. In this study, we constructed a disaster information map for practical use by combining digital images and continuous cadastral maps of damaged areas using a geographic information system to provide basic data and attribute information. In addition, we predicted the areas at risk of flash floods by calculating the flood capacity of the study area for different rainfall frequencies through flood inundation simulation, which was used to obtain comprehensive disaster information. Further, we calculated the extent of the flooded area and the damage rate for different rainfall frequencies using cadastral information. Flood inundation simulation in the case of heavy rainfall was found to help improve the ability to react to a flood and enhance the efficiency of rescue work by supporting decision-making for disaster management.

Effect of Estimation for Time of Concentration on the Design Flood (홍수도달시간 산정방법이 설계홍수량에 미치는 영향)

  • Kwon, Ki Dae;Lee, Jun Ho;Kang, Mi Jeong;Jee, Hong Kee
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.125-137
    • /
    • 2014
  • In this study, that the Kraven(II) empirical formula, the existing method to estimate the time of concentration in river basin, does not reflect the characteristics of relevant basin as it presents 3 stream velocities by section of slope was verified, and the time of concentration for the actual average stream velocity considering the characteristics of the basin was compared and analyzed by applying the continuous Kraven empirical formula, which was suggested recently by 'Design Flood Estimation Guide Line, 2012, Ministry of Land, Transport and Maritime Affairs' complementing the stream velocities for the easy slope and the steep slope, to the Donghwa-Cheon, the medium size river and the modality of changes in hydrograph was examined, For the Maeho-Cheon, Wuksu-Cheon and Geumpo-Cheon, the flood runoff simulation results according to the time of concentration application empirical formula considering the characteristics of relevant basin were compared and analyzed and following conclusions were able to obtain.