• 제목/요약/키워드: Continuous Objects

Search Result 259, Processing Time 0.025 seconds

An Efficient Pruning Method for Subspace Skyline Queries of Moving Objects (이동 객체의 부분차원 스카이라인 질의를 위한 효율적인 가지치기 기법)

  • Kim, Jin-Ho;Park, Young-Bae
    • Journal of KIISE:Databases
    • /
    • v.35 no.2
    • /
    • pp.182-191
    • /
    • 2008
  • Most of previous works for skyline queries have focused only on static attributes of target objects. With the advance in mobile applications, however, the need of continuous skyline queries for moving objects has been increasing. Even though several techniques to process continuous skyline queries have been proposed recently, they cannot process subspace queries, which use only the subset of attribute dimensions. Therefore it is not feasible to utilize those methods for mobile applications which must consider moving objects and subspaces simultaneously. In this paper, we propose a dominant object-based pruning method to compute subspace skyline of moving objects efficiently at query time and present the experimental results to show the effectiveness of the proposed method.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

Continuous Nearest Neighbor Query Processing on Trajectory of Moving Objects (이동객체의 궤적에 대한 연속 최근접 질의 처리)

  • 지정희;최보윤;김상호;류근호
    • Journal of KIISE:Databases
    • /
    • v.31 no.5
    • /
    • pp.492-504
    • /
    • 2004
  • Recently, as growing of interest for LBS(location-based services) techniques, lots of works on moving objects that continuously change their information over time, have been performed briskly. Also, researches for NN(nearest neighbor) query which has often been used in LBS, are progressed variously However, the results of conventional NN Query processing techniques may be invalidated as the query and data objects move. Therefore, they are usually meaningless in moving object management system such as LBS. To solve these problems, in this paper we propose a new nearest neighbor query processing technique, called CTNN, which is possible to meet accurate and continuous query processing for moving objects. Our techniques include an Approximate CTNN(ACTNN) technique, which has quick response time, and an Exact CTNN(ECTNN) technique, which makes it possible to search nearest neighbor objects accurately. In order to evaluate the proposed techniques, we experimented with various datasets. Experimental results showed that the ECTNN technique has high accuracy, but has a little low performance for response time. Also the ACTNN technique has low accuracy comparing with the ECTNN, but has quick response time The proposed techniques can be applied to navigation system, traffic control system, distribution information system, etc., and specially are most suitable when both data and query are moving objects and when we already know their trajectory.

Study on Continuous Nearest Neighbor Query on Trajectory of Moving Objects (이동객체의 궤적에 대한 연속 최근접 질의에 관한 연구)

  • Jeong, Ji-Mun
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.517-530
    • /
    • 2005
  • Researches for NN(nearest neighbor) query which is often used in LBS system, have been worked. However, Conventional NN query processing techniques are usually meaningless in moving object management system for LBS since their results may be invalidated as soon as the query and data objects move. To solve these problems, in this paper we propose a new nearest neighbor query processing technique, called CTNN, which is possible to meet continuous trajectory nearest neighbor query processing. The proposed technique consists of Approximate CTNN technique which has quick response time, and Exact CTNN technique which makes it possible to search accurately nearest neighbor objects. Experimental results using GSTD datasets showed that the Exact CTNN technique has high accuracy, but has a little low performance for response time. They also showed that the Approximate CTNN technique has low accuracy comparing with the Exact CTNN, but has high response time.

  • PDF

Study on Continuous Nearest Neighbor Query on Trajectory of Moving Objects (이동객체의 궤적에 대한 연속 최근접 질의에 관한 연구)

  • Chung, Ji-Moon
    • Journal of Digital Convergence
    • /
    • v.3 no.1
    • /
    • pp.149-163
    • /
    • 2005
  • Researches for NN(nearest neighbor) query which is often used in LBS system, have been worked. However. Conventional NN query processing techniques are usually meaningless in moving object management system for LBS since their results may be invalidated as soon as the query and data objects move. To solve these problems, in this paper we propose a new nearest neighbor query processing technique, called CTNN, which is possible to meet continuous trajectory nearest neighbor query processing. The proposed technique consists of Approximate CTNN technique which has quick response time, and Exact CTNN technique which makes it possible to search accurately nearest neighbor objects. Experimental results using GSTD datasets shows that the Exact CTNN technique has high accuracy, but has a little low performance for response time. They also shows that the Approximate CTNN technique has low accuracy comparing with the Exact CTNN, but has high response time.

  • PDF

Cluster-based Continuous Object Prediction Algorithm for Energy Efficiency in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 위한 클러스터 기반의 연속 객체 예측 기법)

  • Lee, Wan-Seop;Hong, Hyung-Seop;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8C
    • /
    • pp.489-496
    • /
    • 2011
  • Energy efficiency in wireless sensor networks is a principal issue to prolong applications to track the movement of the large-scale phenomena. It is a selective wakeup approach that is an effective way to save energy in the networks. However, most previous studies with the selective wakeup scheme are concentrated on individual objects such as intruders and tanks, and thus cannot be applied for tracking continuous objects such as wild fire and poison gas. This is because the continuous object is pretty flexible and volatile due to its sensitiveness to surrounding circumferences so that movable area cannot be estimated by the just spatiotemporal mechanism. Therefore, we propose a cluster-based algorithm for applying the efficient and more accurate technique to the continuous object tracking in enough dense sensor networks. Proposed algorithm wakes up the sensors in unit cluster where target objects may be diffused or shrunken. Moreover, our scheme is asynchronous because it does not need to calculate the next area at the same time.

Multimedia Synchronization Method for Presenting Event Objects (이벤트 객체를 표현하기 위한 멀티미디어 동기화 기법)

  • 이근왕;이기성;김은영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3B
    • /
    • pp.431-436
    • /
    • 2000
  • It is required for us to design multimedia synchronization model which present mixed media, tat contains not only continuous medial but also discontinuous media. And it is useful for us to develop multimedia application software. Proposed paper represents model tat expresses continuous media and discontinuous media. And continuous medial show the temporal relations between media objects then discontinuous media spatial relations. The model proposed in this paper is effective in applying the system to guarantee high quality of services and can process real time application form applying efficient multiple key media when events occur. We verified that the proposed model has improved media palyout rate compared with other previous synchronization models through simulation.

  • PDF

Estimation of Uncertain Past and Future Locations of Moving objects (이동 객체의 불확실한 과거 및 미래의 위치 추정)

  • 안윤애;류근호
    • Journal of KIISE:Databases
    • /
    • v.29 no.6
    • /
    • pp.441-452
    • /
    • 2002
  • If continuous moving objects are managed by conventional database, it is not possible for them to store all position information changed over time in the database. Therefore, a time period of regular rate is determined and position information of moving objects are discretely stored in the system for every time period. However, if continuous moving objects are managed as discrete model, we will have problems which cannot properly answer to the query about uncertain past or future position information. To solve this problem, in this paper, we propose the method and algorithm which use the history information stored in the same database, to estimate the past or future location of moving objects. The cubic spline interpolation is used to estimate the past location and the mean movement value of the history information is used to predict the future location of moving objects. Finally, from the location estimation experimentation of using virtual trajectory and location sample, we proved that the proposed cubic spline function has less error than the linear function.

CHEMICAL EVOLUTION IN VeLLOs

  • Lee, Jeong-Eun
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.83-89
    • /
    • 2007
  • A new type of object called "Very Low Luminosity Objects (VeLLOs)" has been discovered by the Spitzer Space Telescope. VeLLOs might be substellar objects forming by accretion. However, some VeLLOs are associated with strong outflows, indicating the previous existence of massive accretion. The thermal history, which significantly affects the chemistry, between substellar objects with a continuous low accretion rate and objects in a quiescent phase after massive accretion (outburst) must be greatly different. In this study, the chemical evolution has been calculated in an episodic accretion model to show that CO and $N_2H^+$ have a relation different from starless cores or Class 0/I objects. Furthermore, the $CO_2$ ice feature at $15.2{\mu}m$ will be a good tracer of the thermal process in VeLLOs.

An Efficient Processing of Continuous Range Queries on High-Dimensional Spatial Data (고차원 공간 데이터를 위한 연속 범위 질의의 효율적인 처리)

  • Jang, Su-Min;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.6
    • /
    • pp.397-401
    • /
    • 2007
  • Recent applications on continuous queries on moving objects are extended quickly to various parts. These applications need not only 2-dimensional space data but also high-dimensional space data. If we use previous index for overlapped continuous range queries on high-dimensional space data, as the number of continuous range queries on a large number of moving objects becomes larger, their performance degrades significantly. We focus on stationary queries, non-exponential increase of storage cost and efficient processing time for large data sets. In this paper, to solve these problems, we present a novel query indexing method, denoted as PAB(Projected Attribute Bit)-based query index. We transfer information of high-dimensional continuous range query on each axis into one-dimensional bit lists by projecting technique. Also proposed query index supports incremental update for efficient query processing. Through various experiments, we show that our method outperforms the CES(containment-encoded squares)-based indexing method which is one of the most recent research.