• Title/Summary/Keyword: Contents Recommendation Method

Search Result 161, Processing Time 0.023 seconds

Addressing the Cold Start Problem of Recommendation Method based on App (초기 사용자 문제 개선을 위한 앱 기반의 추천 기법)

  • Kim, Sung Rim;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.69-78
    • /
    • 2019
  • The amount of data is increasing significantly as information and communication technology advances, mobile, cloud computing, the Internet of Things and social network services become commonplace. As the data grows exponentially, there is a growing demand for services that recommend the information that users want from large amounts of data. Collaborative filtering method is commonly used in information recommendation methods. One of the problems with collaborative filtering-based recommendation method is the cold start problem. In this paper, we propose a method to improve the cold start problem. That is, it solves the cold start problem by mapping the item evaluation data that does not exist to the initial user to the automatically generated data from the mobile app. We describe the main contents of the proposed method and explain the proposed method through the book recommendation scenario. We show the superiority of the proposed method through comparison with existing methods.

Automatic Recommendation of IPTV Programs using Collaborative Filtering (협업 필터링을 통한 IPTV 프로그램 자동 추천)

  • Kim, Eun-Hui;Kim, Mun-Churl
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.701-702
    • /
    • 2008
  • A large amount of efforts are required to search user's preferred contents for the program contents being provided by IPTV services. In this paper, using collaborative filtering, an automatic recommendation method of IPTV program contents is presented by reasoning similar group preferences on IPTV program contents which constitutes personalized IPTV environments. The proposed method models the user's preference of IPTV program contents with the program attributes such as content, genres, channels actor/actress, staffs and calculates it using the watching history of program contents in different genres and watching times. Also, the proposed method considers timely changing user's preference and the preference oon the content itself, which improves the traditional collaborative filtering methods that can not recommend the non-consumed items.

  • PDF

Enhancing Similar Business Group Recommendation through Derivative Criteria and Web Crawling

  • Min Jeong LEE;In Seop NA
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2809-2821
    • /
    • 2023
  • Effective recommendation of similar business groups is a critical factor in obtaining market information for companies. In this study, we propose a novel method for enhancing similar business group recommendation by incorporating derivative criteria and web crawling. We use employment announcements, employment incentives, and corporate vocational training information to derive additional criteria for similar business group selection. Web crawling is employed to collect data related to the derived criteria from 'credit jobs' and 'worknet' sites. We compare the efficiency of different datasets and machine learning methods, including XGBoost, LGBM, Adaboost, Linear Regression, K-NN, and SVM. The proposed model extracts derivatives that reflect the financial and scale characteristics of the company, which are then incorporated into a new set of recommendation criteria. Similar business groups are selected using a Euclidean distance-based model. Our experimental results show that the proposed method improves the accuracy of similar business group recommendation. Overall, this study demonstrates the potential of incorporating derivative criteria and web crawling to enhance similar business group recommendation and obtain market information more efficiently.

Design and Implementation of SNS-based Exhibition-related Contents Recommendation Service (SNS 기반 전시물 관련 콘텐츠 추천 서비스 설계 및 구현)

  • Seo, Yoon-Deuk;Ahn, Jin-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.95-101
    • /
    • 2012
  • As the influence of social networking services across the societies becomes greatly higher, many of the domestic agencies are trying to communicate with users through the introduction of social networking services. In this paper, we present a reliable exhibition-related contents recommendation service to combine social networking service concept with the customized contents recommendation method we previously proposed. The proposed service may effectively and reliably recommend its users exhibition-related contents by exploiting their relationships in the social networks compared with the existing ones.

The Educational Contents Recommendation System Design based on Collaborative Filtering Method (협업 여과 기반의 교육용 컨텐츠 추천 시스템 설계)

  • Lee, Yong-Jun;Lee, Se-Hoon;Wang, Chang-Jong
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.2
    • /
    • pp.147-156
    • /
    • 2003
  • Collaborative Filtering is a popular technology in electronic commerce, which adapt the opinions of entire communities to provide interesting products or personalized resources and items. It has been applied to many kinds of electronic commerce domain since Collaborative Filtering has proven an accurate and reliable tool. But educational application remain limited yet. We design collaborative filtering recommendation system using user's ratings in educational contents recommendation. Also We propose a method of similarity compensation using user's information for improvement of recommendation accuracy. The proposed method is more efficient than the traditional collaborative filtering method by experimental comparisons of mean absolute error(MAE) and reciever operating characteristics(ROC) values.

  • PDF

A Movie Recommendation Method based on Emotion Ontology (감정 온톨로지 기반의 영화 추천 기법)

  • Kim, Ok-Seob;Lee, Seok-Won
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1068-1082
    • /
    • 2015
  • Due to the rapid advancement of the mobile technology, smart phones have been widely used in the current society. This lead to an easier way to retrieve video contents using web and mobile services. However, it is not a trivial problem to retrieve particular video contents based on users' specific preferences. The current movie recommendation system is based on the users' preference information. However, this system does not consider any emotional means or perspectives in each movie, which results in the dissatisfaction of user's emotional requirements. In order to address users' preferences and emotional requirements, this research proposes a movie recommendation technology to represent a movie's emotion and its associations. The proposed approach contains the development of emotion ontology by representing the relationship between the emotion and the concepts which cause emotional effects. Based on the current movie metadata ontology, this research also developed movie-emotion ontology based on the representation of the metadata related to the emotion. The proposed movie recommendation method recommends the movie by using movie-emotion ontology based on the emotion knowledge. Using this proposed approach, the user will be able to get the list of movies based on their preferences and emotional requirements.

Social Network Based Music Recommendation System (소셜네트워크 기반 음악 추천시스템)

  • Park, Taesoo;Jeong, Ok-Ran
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.133-141
    • /
    • 2015
  • Mass multimedia contents are shared through various social media servies including social network service. As social network reveals user's current situation and interest, highly satisfactory personalized recommendation can be made when such features are applied to the recommendation system. In addition, classifying the music by emotion and using analyzed information about user's recent emotion or current situation by analyzing user's social network, it will be useful upon recommending music to the user. In this paper, we propose a music recommendation method that makes an emotion model to classify the music, classifies the music according to the emotion model, and extracts user's current emotional state represented on the social network to recommend music, and evaluates the validity of our method through experiments.

A Multimedia Contents Recommendation System using Preference Transition Probability (선호도 전이 확률을 이용한 멀티미디어 컨텐츠 추천 시스템)

  • Park, Sung-Joon;Kang, Sang-Gil;Kim, Young-Kuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.164-171
    • /
    • 2006
  • Recently Digital multimedia broadcasting (DMB) has been available as a commercial service. The users sometimes have difficulty in finding their preferred multimedia contents and need to spend a lot of searching time finding them. They are even very likely to miss their preferred contents while searching for them. In order to solve the problem, we need a method for recommendation users preferred only minimum information. We propose an algorithm and a system for recommending users' preferred contents using preference transition probability from user's usage history. The system includes four agents: a client manager agent, a monitoring agent, a learning agent, and a recommendation agent. The client manager agent interacts and coordinates with the other modules, the monitoring agent gathers usage data for analyzing the user's preference of the contents, the learning agent cleans the gathered usage data and modeling with state transition matrix over time, and the recommendation agent recommends the user's preferred contents by analyzing the cleaned usage data. In the recommendation agent, we developed the recommendation algorithm using a user's preference transition probability for the contents. The prototype of the proposed system is designed and implemented on the WIPI(Wireless Internet Platform for Interoperability). The experimental results show that the recommendation algorithm using a user's preference transition probability can provide better performances than a conventional method.

Automatic Tag Classification from Sound Data for Graph-Based Music Recommendation (그래프 기반 음악 추천을 위한 소리 데이터를 통한 태그 자동 분류)

  • Kim, Taejin;Kim, Heechan;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.10
    • /
    • pp.399-406
    • /
    • 2021
  • With the steady growth of the content industry, the need for research that automatically recommending content suitable for individual tastes is increasing. In order to improve the accuracy of automatic content recommendation, it is needed to fuse existing recommendation techniques using users' preference history for contents along with recommendation techniques using content metadata or features extracted from the content itself. In this work, we propose a new graph-based music recommendation method which learns an LSTM-based classification model to automatically extract appropriate tagging words from sound data and apply the extracted tagging words together with the users' preferred music lists and music metadata to graph-based music recommendation. Experimental results show that the proposed method outperforms existing recommendation methods in terms of the recommendation accuracy.

Image recommendation algorithm based on profile using user preference and visual descriptor (사용자 선호도와 시각적 기술자를 이용한 사용자 프로파일 기반 이미지 추천 알고리즘)

  • Kim, Deok-Hwan;Yang, Jun-Sik;Cho, Won-Hee
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.463-474
    • /
    • 2008
  • The advancement of information technology and the popularization of Internet has explosively increased the amount of multimedia contents. Therefore, the requirement of multimedia recommendation to satisfy a user's needs increases fastly. Up to now, CF is used to recommend general items and multimedia contents. However, general CF doesn't reflect visual characteristics of image contents so that it can't be adaptable to image recommendation. Besides, it has limitations in new item recommendation, the sparsity problem, and dynamic change of user preference. In this paper, we present new image recommendation method FBCF (Feature Based Collaborative Filtering) to resolve such problems. FBCF builds new user profile by clustering visual features in terms of user preference, and reflects user's current preference to recommendation by using preference feedback. Experimental result using real mobile images demonstrate that FBCF outperforms conventional CF by 400% in terms of recommendation ratio.