• Title/Summary/Keyword: Contaminated soil remediation

Search Result 575, Processing Time 0.028 seconds

Analysis on Effects of Permeability in Contaminated Area on Extraction of Contaminants from Soil Using Vertical Drains (연직배수재에 의한 토양오염물질 추출에 지반의 투수계수가 미치는 영향분석)

  • Lee, Haeng-Woo;Chang, Pyoung-Wuck;Kang, Byung-Yoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.373-381
    • /
    • 2005
  • The permeability of contaminated soil and elapsed time are important considering factors to in-situ soil remadiation. Gabr et. al. (1996) derived the solution equation of contaminant concentration ratio as initial one (C/$C_0$) with time and spatial changes in contaminated area which embedded with vertical drains. The contaminant concentration ratio (C/$C_0$) is analyzed with time and spatial changes in three different permeability areas which are $k=l.0{\times}10^{-5,}$ $l.0{\times}l0^{-6,}$ $l.0{\times}l0^{-7}\;_{m/s}$ by using the Gabr's equation. Results from numerical analysis indicate that the ratio (C/$C_0$) decreases as the elapsed time increases in every point, however, remediation efficiency decreases as the analyzing point is far from injection well to extraction one and is deeper from top level of contaminated area. And also it decreases as the permeability of contaminated area decreases. Especially, the lower permeability of contaminated area effects directly on the soil remediation, in this research, under condition which the permeability of contaminated area is $l.0{\times}l0^{-7}\;_{m/s}$, the maximum time needed to attain 90% clean up level ($t_{90}$) is 65,690 hours(7.5 years), it takes so much time to clean the low permeability contaminated soil.

  • PDF

A Case Study of Landfarming Design Procedures for Remediation of Oil-contaminated Site (유류오염지역 정화를 위한 토양경작법 설계 표준화방안)

  • Cho, Chang-Hwan;Park, Jeong-Gu;Park, Min-Gyu;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.659-666
    • /
    • 2014
  • The purpose of this study was to suggest a standard design procedure of landfarming for clean-up of oil-contaminated soils. The standard design procedure consisted of four main phases; soil characterization, determination of contaminated soil volume, determination of nutrient and microbial doses, and estimation of the total remedial period. This study selected standard design parameter values or ranges among various forms used in environmental engineer communities. Those were determination procedures for the contaminated soil volume, the initial contamination concentration and nutrient doses. The suggested standard design procedure were applied for a landfarm design for remediation of a real oil-contaminated site. Soil texture of the site was classified as sandy clay loam and sandy loam. Total nitrogen and total phosphorus were estimated to be 57.01 mg/kg and 83.40 mg/kg, respectively. Also the viable bacterial numbers was assessed to be $1.78{\times}10^4CFU/g$ dry soil. The amount of TPH contaminated soil was estimated to be $4,092m^3$. With the application of remedial factors, it was estimated that the contaminated soil could be treated through 9 batches with a duration of 315 days for a landfarming unit of $15m{\times}40m{\times}1m$. The amount of liquid microorganisms and fertilizers were recommended to be 4,025L and 4,641kg, respectively.

Review for Remediation Techniques of Contaminated Soil with Heavy Metals (중금속 오염토양의 복원기술에 대한 고찰)

  • Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.53-63
    • /
    • 2013
  • It is well known that problem for contaminated soil with heavy metals is mainly produced from agricultural land around abandoned metal mine and the cost to solve them is much higher than those of water and air pollution in addition, it takes much more time to clarify the contaminated soil. Until now, economical and practical many techniques to remediate contaminated soils with heavy metals have been developed and proposed. Therefore, in this study, characteristic, merit and weakness for various techniques which are developing and commercializing recently in domestic/foreign country will be reviewed.

Removal of Semi-volatile Soil Organic Contaminants with Microwave and Additives (극초단파(마이크로파)와 첨가제를 이용한 오염토양 내 준휘발성 유기오염물질 제거)

  • Jeong, Sangjo;Choi, Hyungjin
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.67-77
    • /
    • 2013
  • To improve the energy efficiency of conventional thermal treatment, soil remediation with microwave has been studied. In this study, the remediation efficiency of contaminated soil with semi-volatile organic contaminants were evaluated with microwave oven and several additives such as water, formic acid, iron powder, sodium hydroxide (NaOH) solution, and activated carbon. For the experiment, loamy sand and sandy loam collected from Imjin river flood plain were intentionally contaminated with hexachlorobenzene and phenanthrene, respectively. The contaminated soils were treated with microwave facility and the mass removals of organic contaminants from soils were evaluated. Among additives that were added to increase the remediation efficiency, activated carbon and NaOH solution were more effective than water, iron powder, and formic acid. When 10 g of hexachlorobenzene (142.4 mg/kg-soil) or phenanthrene (2,138.8 mg/kg-soil) contaminated soil that mixed with 0.5 g iron powder, 0.5 g activated carbon and 1 ml 6.25 M NaOH solution were treated with microwave for 3 minutes, more than 95% of contaminants were removed. The degradation of hexachlorobenzene during microwave treatments with additives was confirmed by the detection of pentachlorobenzene and tetrachlorobenzene. Naphthalene and phenol were also detected as degradation products of phenanthrene during microwave treatment with additives. The results showed that adding a suitable amount of additives for microwave treatments fairly increased the efficiency of removing semi-volatile soil organic contaminants.

Remediation of cesium-contaminated fine soil using electrokinetic method

  • Kim, Ilgook;Kim, June-Hyun;Kim, Sung-Man;Park, Chan Woo;Yang, Hee-Man;Yoon, In-Ho
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2020
  • In this study, electrokinetic remediation equipment was used to remove cesium (Cs) from clay soil and waste solution was treated with sorption process. The influence of electrokinetic process on the removal of Cs was evaluated under the condition of applied electric voltage of 15.0-20.0 V. In addition to monitoring the Cs removal, electrical current and temperature of the electrolyte during experiment were investigated. The removal efficiency of Cs from soil by electrokinetic method was more than 90%. After electrokinetic remediation, Cs was selectively separated from soil waste solution using sorbents. Various adsorption agents such as potassium nickel hexacyanoferrate (KNiHCF), Prussian blue, sodium tetraphenylborate (NaTPB), and zeolite were compared and KNiHCF showed the highest Cs removal efficiency. The Cs adsorption on KNiHCF reached equilibrium in 30 min. The maximum adsorption capacity was 120.4 mg/g at 0.1 g/L of adsorbent dosage. These results demonstrated that our proposed process combined electrokinetic remediation of soil and waste solution treatment with metal ferrocyanide can be a promising technique to decontaminate Cs-contaminated fine soil.

Case Study of Health Risk Assessment and Preliminary Remediation Goals Calculation for the Petroleum Contaminated Site (유류 오염지역 토양의 위해성 평가 및 사전복원목표 산정 사례연구)

  • 정규혁
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.4
    • /
    • pp.347-355
    • /
    • 2002
  • As concerns on the effects of soil contamination on human health have grown, more efforts have been made to quantify the effects. One of such efforts is the development of risk assessment methodology. The fundamental objectives of this approach is to investigate the alternative options that reduce the risk of hazardous chemicals results from environmental pollution, which will eventually lead to an accomplishment of removement of identified toxicants in polluted environment. The U.S. EPA Risk Assessment guidance for the superfund (RAGS) provides a methods for assessing the health risk of contaminated soils and determining the preliminary remediation goals (PRGs). Using this approach, we assessed the health risk and preliminary remediation goals of petroleum contaminated site in Kyounggi province.

Synergism effect of mixed surfactant solutions in remediation of soil contaminated with PCE

  • Lee, Dal-Heui
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.47-51
    • /
    • 2004
  • The purpose of this research was to evaluate the effect of mixed surfactant solution for removal of perchloroethylene (PCE) in soil. Ten different surfactant solutions were used in column studies. Mixed surfactant solutions (anionic and nonionic) were most effectively worked in the sandy soil for removal of PCE as a result of synergism between the two types of surfactants. The effectiveness of the mixture of surfactants was 35 % greater than that for the anionic or nonionic surfactant alone. The results indicate that mixed surfactant solution leaching is a promising candidate for the remediation of PCE contaminated sandy soil.

  • PDF

유류오염토양 복원을 위한 설계인자 선정에 관한 연구

  • 조장환;전권호;서창일;박정구
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.293-296
    • /
    • 2004
  • The objective of this study was to decide the designing factor for remediaton of the contaminated site. The soil and ground-water samples were analyzed and hydro- geological characteristics was assayed for the survey of pollution level. Also air-permeability test and MPN(most probable number) test were conducted for selecting the designing factor. The contaminants were mainly found in north-west part of the site and were expected to move toward the south. Ex-situ technology was expected more useful than in-situ one with the results of air-permeability test saying that air permeability was relatively low. Additional microbes were expected for remediation efficiency because residual microbes were loosely populated. The choosing of the designing factor was requisite for remediation of contaminated site.

  • PDF

Analysis and Bioremediation for the Soil Contaminated by Lubricant (윤활유 오염토양의 분석 및 생물학적 복원)

  • Lee, Jae-Young;Jung, Woo-Sung;Cho, Young-Min;Choi, Sung-Kyou;Ko, Sung-Hwan;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1843-1845
    • /
    • 2007
  • As the preservation law of soil environment has reinforced, several soil remediation projects have been performing for railroad sites. One of the main sources of soil contamination is the leakage of diesel from locomotives or underground storage tank. Also, the lubricant used to maintain turnouts causes railroad soil contamination. The purpose of this study was to develop the analysis and the remediation method for lubricant-contaminated soil. The lubricant in the contaminated soil was analyzed qualitatively and quantitatively by TLC (Thin Layer Chromatography) and GC (Gas Chromatography), respectively. The organic pollutants were removed from the soil using microorganisms degrading lubricant. Hereafter it will be necessary to apply this bioremediation method in the railroad field.

  • PDF

Microwave Remediation of Soils Contaminated by Volatile Organic Chemicals (마이크로파에 의한 휘발성 유기토양오염물질 제거에 관한 연구)

  • 문경환;김우현;이병철;김덕찬
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.116-122
    • /
    • 1996
  • This study has been focused on the applicability of microwave treatment of soil contaminated by volitile organic chemicals. Substrates studied were sand and sandy soil. These substrates were impregnated with toluene, tetrachloroethylene, o-xylene and p-dichlorobenzene. The microwave treatment was conducted in a modified domestic microwave oven: 2450 MHz, 700 W. The sandy soil temperature added water went up rapidly to about 130$\circ$C for 4 minutes. And then, the temperature appeared to plateau out. A series of tests were performed to depict the effectiveness of microwave treatment technique to organic contaminants from soils. Removal efficiencies in sandy soil and sand were increased with increasing water content and exposure time. Microwave radiation penetrates the soil and heats water throughout the matrix. Therefore, addition of a certain amount of water to the contaminated soil can efficiently enhance the ability of the soil to absorb microwave energy and promote the evaporation of the volitile contaminants. And the vapour pressure of impregnated organic contaminants becomes lower. the removal efficiency becomes poor.

  • PDF