• Title/Summary/Keyword: Contaminated sediments

Search Result 203, Processing Time 0.027 seconds

Analysis the depth effect of organic pollutants and heavy metals using biostimulant ball in contaminated coastal sediments (해양오염저질의 오염물질 정화를 위한 생물활성촉진제 투여 깊이 연구)

  • Song, Young-chae;Woo, Jung-Hui;Subha, Bakthavachallam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.177-178
    • /
    • 2015
  • Sediments play a major role in determining pollution pattern in aquatic systems and reflecting the pollutant deposition. In the present study analysis the depth effect of organic pollutants and heavy metals using slow release biostimulant ball (BSB) in coastal sediment. BSB size fixed at 3cm, depth varied from 0cm to 10cm depth and 1 and 3 month interval period was carried out for the study. The organic pollutants of chemical oxygen demand, total solids and volatile solids were significantly changed at the surface sediment (0cm)in 1 month and 3 month interval time using BSB. In contrast, sediment depth increase upto 10cm the reduction percentage decrease like to control. Vertical distribution of heavy metals are not consistent from the surface layer toward the bottom layers. Heavy metals fractions were significantly changes, the exchangeable fraction was reduced and other organic and residual fractions were stabilized percentage are increased. This finding concluded BSB is effective for reduce organic pollutants, heavy metals stabilization from the contaminated sediment.

  • PDF

Transport and Removal of Organic Substances in Soils by Electroosmosis (전기삼투기법에 의한 토양내 유기오염물질의 이동 및 제거)

  • ;Gilliane C. Sills
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.48-51
    • /
    • 1998
  • This paper presents the transport and removal of organic substances from the contaminated soft soils and sludges such as marine dredging waste, marine sediments, mine tailing waste, and sewage sludge by electroosmosis. A series of laboratory experiments including variable conditions such as contamination levels, solid contents, and applied voltage rates were peformed with the contaminated soft clay specimen mixed with organic substance. Investigated are specimen density, dewatering rate, outflow rate, and outflow concentration. The test results showed that organic substances in the soils were removed by applied voltages. The results indicated that this process can be used efficiently to clean up the contaminated soil.

  • PDF

A Batch Study on BTEX and MTBE Biodegradation by Denitrifiers under Aerobic and Anaerobic Conditions

  • 오인석;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.467-470
    • /
    • 2003
  • Leaking underground storage tanks are a major source of groundwater contamination by petroleum hydrocarbons. Aerobic bioremediation has been highly effective in the remediation of many fuel releases. However, Bioremediation of aromatic hydrocarbons in groundwater and sediments is ofen limited by the inability to provide sufficient oxygen to the contaminated zones due to the low water solubility of oxygen. Nitrate can also serve as an electron acceptor and results in anaerobic biodegradation of organic compounds via the processes of nitrate reduction and denitrification. Because nitrate is less expensive and more soluble than oxygen. it may be more economical to restore fuel-contaminated aquifers using nitrate rather than oxygen. And denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. These studies have shown that BTEX and MTBE can be degraded by the nitrate-amended microcosms under aerobic and anaerobic conditons. Biodegradation of the toluene and ethylbenzne compounds occurred very quickly under denitrifying conditions. MTBE, benzene and p-xylene were recalcitrant under denitrifying conditions in this study, But finally Biodegradaton was observed for all of the test compounds.

  • PDF

A Study on Removal of Heavy Metal from Contaminated Sediment via Bioleaching (연안어장 준설 퇴적물내 함유된 중금속 처리에 관한 연구)

  • Ko Seong-Jung;Yun Jong-Hwui;Song Young-Chae;Kim Dong-Geun;Chung Ho-Soon
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.119-122
    • /
    • 2005
  • As it is known that the korean coastal fishing areas are getting contaminated by heavy metals from the sediment, the authors conducted the experiments to treat the heavy metals with bioleaching process. As a result, it is found that (1) acidification for the leaching of heavy metals is effectively processed when adding more than $0.3\%$ of sulfur and $0.1\%$ of ferrous sulfate. and (2) copper is rapidly solubilized irrespective of addition of sulfur, while solubilization is not processed even of FeS is added., and (3) bioleaching with sulfur and FeSO4 is possible method to effectively treat the heavy metals form the contaminated sediments.

  • PDF

A study of the pollution of ground water in the basin of the river Baem Nae Chun, Sorae-Myun, Shihoong-gon, Kyonggi-Do, Korea (경기도 시흥군 소래면 뱀내하천 유역의 지하수 오염에 관한 연구)

  • 김윤종;정봉일
    • Water for future
    • /
    • v.6 no.2
    • /
    • pp.19-29
    • /
    • 1973
  • The progressive contamination of water resulted from man's activity and the use of fertilizers is not restricted only to surface water, but also the shallow groundwater is affected. This type of groundwater contamination is mainly restricted to areas composed of permeable, nonconsolidated sediments forming a shallow aquifer. The chloride and the sulfate resulted from man's activity and the use of fertilizers were measured to study the variations of the groundwater contamination. In general, (1) When water level rises, the rate of groundwater contamination becomes less and when water level declines, the rate of contamination is increased. (2) The highly contaminated season is the early-summer and the less contaminated season is the winter or after rainy season. (3) The groundwater in weathering zone without covering layer. (4) The degree of contamination of wells is increased with the increase of well depth and lowing the water table, because of increasing contaminated water from enlargement of the area of influence of the well.

  • PDF

A Study on Changes of the Benthic Environment and Microbial Community in Estuarine Polluted Sediments by Mixing Granulated Coal Ash (석탄회 조립물이 혼합된 하구 오염 퇴적물의 환경 및 미생물 구조 변화에 관한 연구)

  • Kim, Heontae;Woo, Hee-Eun;Kim, Jong-Oh;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.492-499
    • /
    • 2021
  • In this study, the benthic environmental and microbial community structure were investigated by mixing granulated coal ash(GCA) and contaminated estuary sediments. Estuary sediments and GCA were mixed in a ratio of 8:2 and allowed to interact for 1 month, then sediment environmental factors were investigated. The pH of the experimental sediment was mixed increased to 11. The concentration of DIP(Dissolved inorganic phosphorus) in the experimental case decreased by 30 % compared to the control case, and this should be due to formation of calcium phosphate through the chemical reaction of DIP and calcium which diluted from GCA. The high abundance of Gammaproteobacteria seen in the experimental sediment compare to the control can af ect the DIP reduction. The DIN(Dissolved inorganic nitrogen) concentration increased over two times in the experimental case than the control, and this should be due to the high pH condition and release of NH4+-N from the GCA. Microorganisms related to nitrogen circulation were not identified in both the control and experimental cases. It was confirmed that the GCA were effective in reducing the DIP concentration in contaminated estuary sediment, and that benthic microbial communities were shown to influenced the phosphorus circulation.

Application of Activated Carbon and Crushed Concrete as Capping Material for Interrupting the Release of Nitrogen, Phosphorus and Organic Substance from Reservoir Sediments (저수지 퇴적물에서 질소, 인 및 유기물질 용출차단을 위한 활성탄과 폐콘크리트의 피복재로서 적용)

  • Kang, Ku;Kim, Won-Jae;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • This study aims to assess the effectiveness of activated carbon (AC) and crushed concrete (CC) as capping material to block the release of nitrogen, phosphorus, and organic substance from reservoir sediments. The efficiency of AC and CC as capping material was evaluated in a reactor in which a 1 or 3 cm thick layer of capping materials was placed on the sediments collected from Mansu reservoir in Anseong-city. Dissolved oxygen (DO) concentration, total nitrogen (T-N), total phosphorus (T-P), and chemical oxygen demand (COD) concentration in reservoir water above the uncapped sediments and capping material were monitored for 45 days. The release rate of T-N was in the following increasing order: AC 3 cm ($1.18mg/m^2{\cdot}d$) < CC 1 cm ($2.66mg/m^2{\cdot}d$) < AC 1 cm ($2.94mg/m^2{\cdot}d$) < CC 3 cm ($3.42mg/m^2{\cdot}d$) < uncapped ($4.59mg/m^2{\cdot}d$). The release rate of T-P was in the following increasing order: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($0.03mg/m^2{\cdot}d$) < AC 1 cm capped ($0.07mg/m^2{\cdot}d$) < uncapped ($0.24mg/m^2{\cdot}d$). The release of nitrogen and phosphorus were effectively blocked by AC capping of 3 cm thickness, and CC capping of 3 cm thickness effectively controlled the release of phosphorus. The order of increasing COD release rate was as follows: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($5.03mg/m^2{\cdot}d$) < AC 1 cm ($7.28mg/m^2{\cdot}d$) < uncapped ($10.05mg/m^2{\cdot}d$), indicating that AC and CC capping effectively interrupted the release of organic contaminants from the sediments. It was concluded that AC and CC could effectively block the release of T-N, T-P and COD release from contaminated reservoir sediments.

Clean-up of the Crude Oil Contaminated Marine Sediments Through Biocarrier-Mediated Bioaugmentation (생물담체 활용 생물접종에 의한 원유로 오염된 해양토양의 정화)

  • Ekpeghere, Kelvin I.;Bae, Hwan-Jin;Kwon, Sung-Hyun;Kim, Byung-Hyuk;Park, Duck-Ja;Kim, Hee-Shik;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.354-361
    • /
    • 2009
  • This study was carried out to develop an effective biocarrier-mediated bioaugmentation technology which will be useful for remediation of the crude oil-contaminated marine sediments. Enrichment of several microbial communities was made from several oil-polluted seashore sites and the two distinctively functional consortia have been successfully selected. These two consortia were grown together and used to manufacture the microbial agents for bioaugmentation of marine sediments polluted with crude oil. The most dominant species in the mixed culture was identified as Alcanivorax borkumensis based on pure culture and DGGE analysis. Bioaugmentation of oil-polluted marine sediments with the microbial agent MA-2 formulated using the mixed culture and biocarriers (activated carbon and minerals) was more effective, especially in combination with an oxygen producing (releasing) compound (ORC). Ninty percent of TPH was removed in the presence of ORC in 35 days while 74% in the absence of ORC. This indicated that the indigenous consortial degraders could be immobilized on the active carbon as a biocarrier to manufacture microbial agents and then effectively bioaugmented for remediation of the oil-polluted sediments.

토양 유기물 분리 처리 방법이 비친수성 오염물질 흡착에 미치는 영향

  • Jeong Sang-Jo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Accurate prediction of the fate and transport of contaminants in soils and sediments is very Important to environmental risk assessment and effective remediation of contaminated soils and sediments. The fate and transport of contaminants in subsurface are affected by geosorbents, especially carbonaceous materials including black carbon. Various physical and chemical treatment methods have been developed to separate different kinds of carbonaceous materials from soils and sediments. However, the effects of these separation methods on the properties of remaining carbonaceous materials including sorption capacity and linearity are unclear. The objective of this study is to determine if the chemical and thermal treatment methods previously used to separate different carbonaceous material fractions affect the properties of carbonaceous materials including longer term sorption capacity of hydrophobic organic contaminants. The results indicate that treatments with hydrochloric acid (HCl)/hydrofluoric acid (HF), trifluoroacetic acid (TFA), sodium hydroxide (NaOH) may not affect the sorption capacity of black carbon reference materials such as char and soot, however, treatments with acid dichromate $(K_2Cr_2O_7/H_2SO_4)$ and heat $(375^{\circ}C)$ for 24 hours in sufficient of oxygen) decrease the sorption capacity of them. The results of longer term sorption isotherm indicate that 2 days might be enough for trichloroethene (TCE) to equilibrate apparently with treated black carbon reference materials. The results suggest that acid dichromate and heat treatments may not appropriate method to investigate sorption properties of black carbon in soils and sediments.

  • PDF

Contamination of Heavy Metals in Stream Sediments in the Vicinity of the Sambo Pb-Zn-Barite Mine (삼보 연-아연-중정석 광산 주변 하상퇴적물에서의 중금속 오염 연구)

  • Kim, Sang-Hyun;Chon, Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.217-226
    • /
    • 1993
  • Stream sediment samples were collected in the vicinity of the Sambo Pb-Zn-barite mine in order to investigate dispersion patterns and pollution levels of heavy metals, and to find out their mode of occurrences. Those samples were analyzed for Cd, Cu, Pb, Zn, Fe, and Mn by using partial extraction and sequential extraction methods. Stream sediments of this studied area has been contaminated severely by Pb, Zn, and Cd. Dispersion patterns of heavy metals in those sediments are different according to their pollution source and sampling distance from the mine. The stream sediment pH is generally neutral in control area, and is slightly acidic in the lower part of tailing dam. The main pollution source of stream sediments was confirmed as tailing and mine drainage. Their pollution level depends mainly on inflowed water and distance from the mine. The tolerance index ranges from -0.9 to 0.7. The mode of occurrances of heavy metals in polluted stream sediment are identified as Fe-Mn oxides, organic bounded and carbonate-bounded compound which show high potential of bioavailablity.

  • PDF