• Title/Summary/Keyword: Contaminated Process

Search Result 686, Processing Time 0.031 seconds

유류오염 토양의 복원을 위한 열탈착 처리기술

  • 유동준;김영웅;박용규;오방일;구자공
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.111-114
    • /
    • 2001
  • Thermal desorption process is valuable for the remediation of oil contaminated site. The system is physical separation process by volatizing oil contaminants from soil matrixes and is not designed to provide high levels of oil destruction. The process is not incineration, because the decomposition of oil materials is not the desired result, although some decomposition may occur. The physical and chemical properties that influence the design and operation of the system include boiling points, soil sorption characteristics, aqueous phase solubility, thermal stability, contaminating oil concentration, moisture contents, particle size distribution and etc.

  • PDF

Effect on electrolyte concentration during the ElectroKinetic-Fenton Process for contaminated soil around railroad turnout (선로분기기 주변 철도토양의 동전기-펜톤 공정 정화에 따른 전해질 농도의 영향)

  • Kang, Hae-Suk;Jung, Woo-Sung;Yun, Sung-Taek;Kwon, Tae-Soon;Lee, Cheul-Kyu;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1997-2001
    • /
    • 2010
  • Generally, railroad soil around turnout was caused by leakage of lubricant oils during its maintenance. So, TPH concentration in soil was much higher than standard in Soil Envirnment Law. In additiont, railroad site was still difficult to assess due to railcar operation. This research was conducted to investigate the effect on electrolyte concentration during the Electrokinetic-Fenton process for contaminated soil around railroad turnout. As a result, experimental result shows that TPH removal in soil and amount of EOF were changed depending on electrolyte concentration. In future, the removal efficiency can be enhanced to optimize concentration in EK-Fenton Process.

  • PDF

Power Spectrum Estimation of EEG Signal Using Robust Filter (로버스트 필터를 이용한 EEG 신호의 스펙트럼 추정)

  • 김택수;허재만
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.125-132
    • /
    • 1992
  • Background EEG signals can be represented as the sum of a conventional AR process and an innovation process. It Is know that conventional estimation techniques, such as least square estimates (LSE) or Gaussian maximum likelihood estimates (MLE-G ) are optimal when the innovation process satisfies the Gaussian or presumed distribution. When the data are contaminated by outliers, however, these assumptions are not met and the power spectrum estimated by conventional estimation techniques may be fatally biased. EEG signal may be affected by artifacts, which are outliers in the statistical term. So the robust filtering estimation technique is used against those artifacts and it performs well for the contaminated EEG signal.

  • PDF

Left Ventricular Image Processing and Displays of Cardiac Function

  • Kuwahara, Michiyoshi
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.1-4
    • /
    • 1985
  • Background EEG signals can be represented as the sum of a conventional AR process and an innovation process. It is know that conventional estimation techniques, such as least square estimates (LSE) or Gauasian maximum likelihood estimates (MLE-G) are optimal when the innovation process satisfies the Gaussian or presumed distribution. When the data are contaminated by outliers, however, these assumptions are not met and the power spectrum estimated by conventional estimation techniques may be fatally biased. EEG signal may be affected by artifacts, which are outliers in the statistical term. So the robust filtering estimation technique is used against those artifacts and it performs well for the contaminated EEG signal.

  • PDF

Recycling of chelating agents after extraction of heavy metals contaminated in soil

  • Jung, Oh-Jin
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_3
    • /
    • pp.139-148
    • /
    • 2001
  • Heavy metals such as Cu, Ni, Cd, and Pb were chemically extract from the contaminated soils using the chelating agents, EDTA and DTPA. These chemical extraction have been focused on its applicability to a wide range of soils. Results of extractive efficiency for heavy metal follow the order : Cu-EDTA $\geq$ Ni-EDTA > Pb-EDTA > Cd-EDTA > Cu-DTPA> Pb-DTPA. This result is coincided with order of conditional formation constants(Kr) of metal-chelate agent. The second study involved the recovery of the metals and EDTA from complex solutions by an electromembrane process. The overall processes of regeneration, recovery, and reuse were evaluated. The electrochemical studies showed that copper could be chosen as an electrode to plate Cd, Cu, and Pb. At least 95% of 75 of EDTA and associated Cu or Pb could be recovered by the electromembrane process. Recovery of Cd by electodeposition was not possible with the copper electrode. The percent EDTA recovery is equal to the percentage of metal electroplated from the chelates.

  • PDF

The remediation of contaminated kaolinite by phenanthrene using Electrokinetic-Fenton process (Electrokinetic-Fenton 공정에 의한 Phenanthrene으로 오염된 카올린의 정화)

  • 김정환;김익현;한상재;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.593-596
    • /
    • 2002
  • This study examined the feasibility of Electrokinetic-Fenton process for remediation of contaminated kaolinite by phenanthrene. The test using 7% H$_2$O$_2$as anode purging solution indicated the higher electrical current and electroosmotic flow than the test using 3.5% H$_2$O$_2$. And distribution in the soil of H$_2$O$_2$concentration showed the higher value of the former than the latter. Furthermore, the test using 7% H$_2$O$_2$and 0.01N H$_2$SO$_4$was the highest electrical current and electroosmotic flow and H$_2$O$_2$was effectively introduced to the cathode region. As it turned out, the treatment effect of phenanthrene was improved in compare with the other tests.

  • PDF

A Case Study of Monitored Natural Attenuation at the Petroleum Hydrocarbon Contaminated Site : II. Evaluation of Natural Attenuation by Groundwater Monitoring (유류오염부지에서 자연저감기법 적용 사례연구 II. 지하수모니터링에 의한 자연저감 평가)

  • Yun Jeong Ki;Lee Min Hyo;Lee Suk Young;Noh Hoe Jung;Kim Moon Soo;Lee Kang Kun;Yang Chang Sool
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.38-48
    • /
    • 2004
  • Natural attenuation of petroleum hydrocarbon was investigated at an industrial complex about 45 Km away from Seoul. The three-years monitoring results indicated that the concentrations of DO, nitrate, and sulfate in the contaminated area were significantly lower than the background monitoring groundwater under the non-contaminated area. The results also showed a higher ferrous iron concentration, a lower redox potential, and a higher (neutral) pH in the contaminated groundwater, suggesting that biodegradation of TEX(Toluene, Ethylbenzene, Xylene) is the major on-going process in the contaminated area. Groundwater in the contaminated area is anaerobic, and sulfate reduction is the dominant terminal electron accepting process in the area. The total attenuation rate was about 0.0017∼0.0224day$^{-1}$ and the estimated first-order degradation rate constant(λ) was 0.0008∼0.0106day$^{-1}$ . However, the reduction of TEX concentration in the groundwater was resulted from not only biodegradation but also dilution and reaeration through recharge of uncotaminated surface and groundwater. The natural attenuation was, therefore, found to be an effective, on-going remedial process at the site.

Remediation of Heavy Metal-Contaminated Soil Within a Military Shooting Range through Physicochemical Treatment (물리화학적 처리를 이용한 군부대 사격장 내 중금속 오염 토양의 정화)

  • Lee, Sang-Woo;Lee, Woo-Chun;Lee, Sang-Hwan;Kim, Soon-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.9-19
    • /
    • 2021
  • This study evaluated the feasibility of combined use of physical separation and soil washing to remediate heavy metals (Pb and Cu) contaminated soil in a military shooting range. The soils were classified into two types based on the level of heavy metal concentrations: a higher contaminated soil (HCS) with Pb and Cu concentrations of 6,243 mg/kg and 407 mg/kg, respectively, and a lower contaminated soil (LCS) with their concentrations of 1,658 mg/kg and 232 mg/kg. Pb level in both soils exceeded the regulatory limit (700 mg/kg), and its concentration generally increased with decreasing soil particle size. However, in some cases, Pb concentrations increased with increasing soil particle size, presumably due to the presence of residues of bullets in the soil matrix. As a pretreatment step, a shaking table was used for physical separation of soil to remove bullet residues while fractionating the contaminated soils into different sizes. The most effective separation and fractionation were achieved at vibration velocity of 296 rpm/min, the table slope of 7.0°, and the separating water flow rate of 23 L/min. The efficiency of ensuing soil washing process for LCS was maximized by using 0.5% HCl with the soil:washing solution mixing ratio of 1:3 for 1 hr treatment. On the contrary, HCS was most effectively remediated by using 1.0% HCl with the same soil:solution mixing ratio for 3 hr. This work demonstrated that the combined use of physical separation and soil washing could be a viable option to remediate soils highly contaminated with heavy metals.

Washing effect of fingermark contaminated with flammable liquids (인화성액체에 오염된 지문의 세척 효과)

  • Ho-Won, Jang;Ji-Yun, Kwon;Hyo-Mi, Kim;Seung-Ju, Yoo;Sungwook, Hong
    • Analytical Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.237-241
    • /
    • 2022
  • The effect of washing fingerprints deposited on glass that were contaminated with a flammable liquid (gasoline, kerosene, diesel, and thinner) was studied by washing with hexane or heptane. The fingerprints were visualized using fuming cyanoacrylate, followed by basic yellow 40 staining. After comparing the washing effect, by dividing one fingerprint into four sections, it was confirmed that the ridge detail was damaged by dissolving the fingerprints in flammable liquid. As a result of washing fingerprints contaminated with flammable liquids using hexane or heptane, fingerprints contaminated with gasoline, kerosene, and thinner did not show a washing effect because the ridge detail was damaged at the time of contamination, and only fingerprints contaminated with diesel exhibited improved ridge detail quality. Because hexane and heptane washing damage the ridge detail, it was found that fingerprints contaminated with gasoline, kerosene, and thinner were better enhanced directly without the washing process. In addition, it was found that the amount of the washing solvent and contact time should be minimized when washing fingerprints contaminated with diesel.

Development of a Pilot-Scale Soil Washing Process (파일롯 규모의 토양세척장치 개발)

  • 장윤영;신정엽;황경엽
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.55-62
    • /
    • 1998
  • Soils contaminated with hydrocarbons and residual metals can be effectively treated by soil washing. In developing the soil washing process several major effects for separating contaminants from coarse soils progressively improved upon combinations of mining and chemical processing approaches. The pilot-scale soils washing process consists of the four major parts : 1) abrasive scouring, 2) scrubbing action using a washwater that is sometimes augmented by surfactants or other agents, 3) rinsing, and 4) regenerating the contaminated washwater. The plant was designed based upon the treatment capacity > 5 ton/hr on site. The lumpy contaminated soil fractions first experience deagglomeration and desliming passing through a rolling mill pipe. In the second unit the attrition scrubbing module equipped with paddles uses high-energy to remove contaminants from the soils. And a final rinsing system is assembled to separate the washwater containing the contaminants and very fine soils from the washed coarse soils. For recycling the contaminated washwater passes through a washwater clarifier specifically designed for flocculation, sedimentation and gravity separation of fine as well as flotation and separation of oils from the washwater. In order to more rapidly assess the applicability of soil washing at a potential site while minimizing the expense of mobilization and operation, a mobile-type soil washing process which is self-contained upon a trailer will be further developed.

  • PDF