• Title/Summary/Keyword: Contaminant particle

Search Result 53, Processing Time 0.027 seconds

The Study on Wafer Cleaning Using Excimer Laser (엑사이머 레이저를 이용한 웨이퍼 크리닝에 관한 고찰)

  • 윤경구;김재구;이성국;최두선;신보성;황경현;정재경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.743-746
    • /
    • 2000
  • The removal of contaminants of silicon wafers has been investigated by various methods. Laser cleaning is the new dry cleaning technique to replace wafer wet cleaning in the near future. A dry laser cleaning uses inert gas jet to remove contaminant particles lifted off by the action of a KrF excimer laser. A laser cleaning model is developed to simulate the cleaning process and analyze the influence of contaminant particles and experimental parameters on laser cleaning efficiency. The model demonstrates that various types of submicrometer-sized particles from the front sides of silicon wafer can be efficiently removed by laser cleaning. The laser cleaning is explained by a particle adhesion model. including van der Waals forces and hydrogen bonding, and a particle removal model involving rapid thermal expansion of the substrate due to the thermoelastic effect. In addition, the experiment of wafer laser cleaning using KrF excimer laser was conducted to remove various contaminant particles.

  • PDF

Numerical evaluation of risk rates for contamination sources in a minienvironment (클린룸 국소환경에서 오염원의 위험율에 대한 수치해석적 평가)

  • Noh, Kwang-Chul
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.181-189
    • /
    • 2018
  • In this study, the risk rates of different contamination sources of the contaminant in a minienvironment were analyzed through Computational Fluid Dynamics (CFD) simulation. The airflow pattern characteristics can only predict the qualitative variation of contaminant concentration, but cannot evaluate the quantitative variations in the risk rate of sources. From the results, the ambient contamination sources mainly affect wafers in the Front Opening Unified Pod (FOUP), whereas the internal contamination sources mainly affect wafers laid on the robot arm in the minienvironment. And the purging plenum system is very useful in protecting the wafers in the FOUP from contaminants transferred from the Fan Filter Unit (FFU). However, this system is unable to protect the wafers on the robot arm from internal contaminants and the wafers in the FOUP from sources of the interface between the FOUP and the minienvironment.

Prediction of particle removal efficiency of contaminant particles on wafer using Monte Carlo model (Monte Carlo 모델을 이용한 웨이퍼 상 오염입자의 세정효율 예측)

  • Seungwook Lee;Donggeun Lee
    • Particle and aerosol research
    • /
    • v.20 no.3
    • /
    • pp.103-114
    • /
    • 2024
  • Liquid-spray cleaning has recently been considered an eco-friendly cleaning method in the semiconductor industry because it efficiently cleans contaminated wafers without using any chemicals, relying instead on direct momentum transfer through dropwise impaction. Previous researches are mainly divided into two groups, such as modelling studies predicting the cleaning effect of single-droplet impact and experimental works for measuring particle removal efficiency (PRE) that essentially accompanies multiple droplet impacts. Here, we developed a Monte Carlo model to connect the single-droplet based model to the ensemble effect of multiple droplet impacts in real cleaning experiments, and thereby predict the PREs from the impaction conditions of droplets and the diameters of target particles. Additionally, we developed a two-fluid supersonic nozzle system, capable of spraying 10-60 ㎛ droplets under control of impact velocity, with aims to validate the model predictions of PREs for 15-130 nm contaminant particles on a Si wafer. We confirmed that the model predictions are in agreement with the experimental data within 7% and the cleaning time needs to be controlled for ensuring the efficient removal of particles.

A Study on the Effects of Contaminant Types on the Wear Degradation Characteristics in Internal Gear Pumps (불순물 입자의 유형에 따른 내접기어 펌프에서의 마모열화 특성 연구)

  • Shin, Jung-Hun;Ji, Kyung-Ryeol;Kim, Hyoung-Eui
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.134-139
    • /
    • 2011
  • The mechanical equipments which are exposed to impure environment undergo significant reductions in their own lifetimes. Several environmental test procedures have been developed to analyze these phenomena. Moreover in the industry to require shorter development duration, accelerated life testers artificially add test containments into machines. In this research JIS Z 8901 test powder was added into internal gear pumps which are used as oil pumps in vehicles and thus the effects of the addition on the degradation of the pumps were examined. Three kinds of contaminants were selected. Two of the contaminants are identical in particle size but different in the composition of the ingredients. The other pair have identical ingredients and composition but different particle size. The quantity of contaminants was also an interesting factor in this study. The results show that each JIS contaminant caused notable degradation in the discharge flow characteristic of pumps while friction torque degradation did not have any tendency. Finally leakage rates were deduced and equivalent wear volume ratios were calculated.

An Experimental Investigation on The Contamination Sensitivity of An Automotive Fuel Pump (자동차 연료펌프의 오염민감도 실험 연구)

  • 이재천;장지현;신현명
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.102-108
    • /
    • 2004
  • This study addresses the contamination sensitivity test of a typical fuel pump for automotive vehicle. The objective of the study is to find the contamination sensitivity coefficient of fuel pump on specific contaminant particle sizes so that optimal fuel filter could be selected. To achieve the objective, the degradation of discharge flow rate of fuel pump was measured under the experiments of various contaminants size ranges of ISO test dust up to 80${\mu}{\textrm}{m}$. The fundamental theory of contamination sensitivity was introduced and the contamination sensitivity coefficients were estimated using the experimental data. Maximum contamination sensitivity coefficient of $5{\times}10^{-6}$ L/minㆍEa was found on the contaminant size range of 40${\mu}{\textrm}{m}$∼50${\mu}{\textrm}{m}$. The magnified picture of the surface of vane disc revealed that the abrasive wear was the principal cause of discharge flow rate degradation. Hence, this study revealed that high efficiency filter on the contaminant particle size range of 30${\mu}{\textrm}{m}$∼70${\mu}{\textrm}{m}$ especially should be used to maintain the service lift of the fuel filter.

Surface Aging Phenomena of EPDM rubber by Contaminant (오손액에 의한 EPDM rubber의 표면열화 현상)

  • 이철호;김상욱
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.317-320
    • /
    • 1997
  • The paper reports on a study of the influence of the size of the particles of alumina trihydrate(ATH) filler on the surface aging characteristics of ehylene propylene diene terpolymer(EPDM). A fixed 100pph concentration of the filler of ATH was used (or all particle sizes from 0.7 to 20$\mu\textrm{m}$, It is show that hysteresis of contact angle and leakage current increase with increasing particle size, whereas tracking resistance decrease with increasing particle size.

  • PDF

Investigation of the Performance Characteristics of an In-Situ Particle Monitor at Low Pressures Using Aerodynamic Lenses (저압상태에서 공기역학적 렌즈를 이용한 In-Situ Particle Monitor의 성능특성 분석)

  • Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1359-1367
    • /
    • 2000
  • In-situ particle monitors(ISPMs) are widely used for monitoring contaminant particles in vacuum-based semiconductor manufacturing equipment. In the present research, the performance of a Particle Measuring Systems(PMS) Vaculaz-2 ISPM at low pressures has been studied. We generated the uniform sized methylene blue particle beams using three identical aerodynamic lenses in the center of the vacuum line, and measured the detection efficiency of the ISPM. The effects of particle size, particle concentration, mass flow rate, system pressure, and arrangement of aerodynamic lenses on the detection efficiency of the ISPM were examined. Results show that the detection efficiency of the ISPM greatly depends on the mass flow rate, and the particle Stokes number. We also found that the optimum Stokes number ranges from 0.4 to 1.9 for the experimental conditions.

Performance Characteristics of In-Situ Particle Monitors at Sub-Atmospheric Pressure (감압상태에서의 In-Situ Particle Monitor의 성능특성)

  • Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1564-1570
    • /
    • 1998
  • In-situ particle monitors(ISPMs) are widely used for monitoring contaminant particles in vacuum-based semiconductor manufacturing equipment. In the present research, the performance of a Particle Measuring Systems(PMS) Vaculaz-2 ISPM at subatmospheric pressures has been studied. We created uniform upstream conditions of particle concentration and measured the detection efficiency, the lower detection limit, and the size response of the ISPM using uniform sized methylene blue aerosol particles. The effect of particle size, particle velocity, particle concentration, and system pressure on the detection efficiency was examined. Results show that the detection efficiency of the ISPM decreases with decreasing chamber pressure, and with increasing mass flow rate. The lower detection limit of the ISPM, determined at 50 % of the measured maximum detection efficiency, was found to be about $0.15{\sim}0.2{\mu}m$, which is similar to the minimum detectable size of $0.17{\mu}$ given by the manufacturer.

Study on Surface Scratch Characteristics of Hard Disk by Ramp Loading Method Using a Scratch Tester (스크래치 테스터의 Ramp Loading 방법을 이용한 하드디스크의 표면 스크래치 특성에 관한 연구)

  • Lee R.J.;Kim D.E.;Kang T.S.;Cho Y.B.;Cho K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.484-487
    • /
    • 2005
  • In order to get the surface characteristics of the HDI of HDD, the surface damage mechanisms must be totally understood. Particle contamination in hard disk drives is a big concern in today's magnetic recording industry since they are major sources of reliability problems. Namely upon contact with the slider or a contaminant particle, the disk may be scratched or the particles may be embedded into the disk surface. In this work, comparison of scratches was made between those found on actual hard disks and those created using a scratch tester. It was found that ramp loading method is an effective way to make similar scratches as the actual ones. From the ramp loading condition, the relationship between the pressure and the scratch track width could be identified.

  • PDF

Development of real-time nanoscale contaminant particle characteristics diagnosis system in vacuum condition (진공공간 내 나노급 오염입자의 실시간 진단시스템 개발)

  • Kang, Sang-Woo;Kim, Taesung
    • Vacuum Magazine
    • /
    • v.2 no.3
    • /
    • pp.11-15
    • /
    • 2015
  • Particle characteristics diagnosis system (PCDS) was developed to measure submicron particle characteristics by modulation of particle beam mass spectrometry (PBMS) with scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). It is possible to measure the particle size distribution in real-time, and the shape, composition can be measured in sequence keeping vacuum condition. Apparatus was calibrated by measuring the size classified NaCl particle which generated at atmospheric pressure. After the calibration, particles were sampled from the exhaust line of plasma enhanced chemical vapor deposition (PECVD) process and measured. Result confirms that PCDS is capable for analyzing particles in vacuum condition.