• 제목/요약/키워드: Contaminant detection

검색결과 53건 처리시간 0.018초

The Significance of the Analytical Sciences In Environmental Assessment

  • Chung, Yong;Ahn, Hye-Won
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.1079-1087
    • /
    • 1995
  • The quality of human life is directly related to the quality of the environment. To assess environmental quality we must first determine the MCLG(Maximum Contaminant Level Goal), MCL(Maximum Contaminant Level), environmental impact and so on. The MCLG is the concentration at which no known adverse health effects occur. The MCLG is determined by risk assessment identifying which process is hazardous assessing, dose-response, human exposure, and characteristics of risk. With consideration of analytical methods, treatment technology, cost and regulatory impact, the MCL is set as close to the MCLG as possible. In this way, determination of the concentration and national distribution of contaminants is important for assessment of environmental quality The analytical sciences pose potential problems in assessing environmental quality. Continuing improvement in the performance of analytical instruments and operating technique has been lowering the limits of detectability. Contaminant concentration below the detection limit has usually been reported as ND(Not-Detected) and this has often been misunderstood as equivalent to zero. Because of this, more the contaminant concentration in the past was below the detection limit, whereas contaminants can be quantified now even though the contaminant concentration might remain the same or may even have decreased. In addition, environmental sampling has various components due to heterogeneous matrices. These samples are used to overestimate the concentration of the contaminant due to large variability, resulting in excess readings for MCL. In this paper, the significance of the analytical sciences is emphasized in both a conceptual and a technical approach to environmental assessment.

  • PDF

Development of Contaminant Detection System using HTS SQUIDs

  • Ohtani, T.;Tanaka, S.;Narita, Y.;Ariyoshi, S.;Suzuki, S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권4호
    • /
    • pp.38-42
    • /
    • 2015
  • In terms of food safety,mixture of contaminants in food is a serious problem for not only consumers but also manufacturers. In general, the target size of the metallic contaminant to be removed is 0.5 mm. However, it is a difficult task for manufacturers to achieve this target, because of lower system sensitivity. Therefore, we developed a food contaminant detection system based on high-Tc RF superconducting quantum interference devices (SQUIDs), which are highly sensitive magnetic sensors. This study aims to improve the signal to noise ratio (SNR) of the system and detect a 0.5 mm diameter steel ball. Using a real time digital signal processing technique along with analog band-pass filters, we improved the SNR of the system. Owing to the improved SNR, a steel ball with a diameter as small as 0.3 mm, with stand-off distance of 117 mm was successfully detected. These results suggest that the proposed system is a promising candidate for the detection of metallic contaminants in food products.

High-$T_c$ SQUID Application for Roll to Roll Metallic Contaminant Detector

  • Tanaka, S.;Kitamura, Y.;Uchida, Y.;Hatsukade, Y.;Ohtani, T.;Suzuki, S.
    • Progress in Superconductivity
    • /
    • 제14권2호
    • /
    • pp.82-86
    • /
    • 2012
  • A sensitive eight-channel high-Tc Superconducting Interference Device (SQUID) detection system for magnetic contaminant in a lithium ion battery anode was developed. Finding ultra-small metallic foreign matter is an important issue for a manufacturer because metallic contaminants carry the risk of an internal short. When contamination occurs, the manufacturer of the product suffers a great loss from recalling the tainted product. Metallic particles with outer dimensions smaller than 100 microns cannot be detected using a conventional X-ray imaging system. Therefore, a highly sensitive detection system for small foreign matter is required. We have already developed a detection system based on a single-channel SQUID gradiometer and horizontal magnetization. For practical use, the detection width of the system should be increased to at least 65 mm by employing multiple sensors. In this paper, we present an 8-ch high-Tc SQUID roll-to-roll system for inspecting a lithium-ion battery anode with a width of 65 mm. A special microscopic type of a cryostat was developed upon which eight SQUID gradiometers were mounted. As a result, small iron particles of 35 microns on a real lithium-ion battery anode with a width of 70 mm were successfully detected. This system is practical for the detection of contaminants in a lithium ion battery anode sheet.

화학재난 현장에서의 사건원인 화학물질 탐지절차 연구 (On the study of Chemical Disaster Cause Chemical Detection Process)

  • Kim, Sungbum;Ahn, Seungyoung;Lee, Jinhwan
    • 한국재난정보학회 논문집
    • /
    • 제10권3호
    • /
    • pp.452-457
    • /
    • 2014
  • 화학재난 발생시 현장대응 요원들은 사건 원인물질의 성상과 잔류오염 농도를 신속 정확하게 파악해야 한다. 또한 화학재난 현장에서의 적절한 대응절차 진행을 위해서는 화학물질의 성상과 오염농도 확인은 필수적이다. 이를 위해 현장에서 사용하는 각 장비의 특징을 알아보고자 한다. 현장대응장비는 모든 화학물질을 확인할 수 없으며, 각 장비별로 물질탐지에 제한적이다. 장비별 물질탐지 범위와 상호보완성을 고려해야 한다. 본 연구에서는 현장 활용장비인 간이탐지 킷과 검지관식 탐지장비, 전자식 탐지장비의 신속한 현장 활용을 위한 대응절차를 마련하여 현장대응에 도움을 주고자 한다.

감압상태에서의 In-Situ Particle Monitor의 성능특성 (Performance Characteristics of In-Situ Particle Monitors at Sub-Atmospheric Pressure)

  • 배귀남
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1564-1570
    • /
    • 1998
  • In-situ particle monitors(ISPMs) are widely used for monitoring contaminant particles in vacuum-based semiconductor manufacturing equipment. In the present research, the performance of a Particle Measuring Systems(PMS) Vaculaz-2 ISPM at subatmospheric pressures has been studied. We created uniform upstream conditions of particle concentration and measured the detection efficiency, the lower detection limit, and the size response of the ISPM using uniform sized methylene blue aerosol particles. The effect of particle size, particle velocity, particle concentration, and system pressure on the detection efficiency was examined. Results show that the detection efficiency of the ISPM decreases with decreasing chamber pressure, and with increasing mass flow rate. The lower detection limit of the ISPM, determined at 50 % of the measured maximum detection efficiency, was found to be about $0.15{\sim}0.2{\mu}m$, which is similar to the minimum detectable size of $0.17{\mu}$ given by the manufacturer.

저압상태에서 공기역학적 렌즈를 이용한 In-Situ Particle Monitor의 성능특성 분석 (Investigation of the Performance Characteristics of an In-Situ Particle Monitor at Low Pressures Using Aerodynamic Lenses)

  • 배귀남
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1359-1367
    • /
    • 2000
  • In-situ particle monitors(ISPMs) are widely used for monitoring contaminant particles in vacuum-based semiconductor manufacturing equipment. In the present research, the performance of a Particle Measuring Systems(PMS) Vaculaz-2 ISPM at low pressures has been studied. We generated the uniform sized methylene blue particle beams using three identical aerodynamic lenses in the center of the vacuum line, and measured the detection efficiency of the ISPM. The effects of particle size, particle concentration, mass flow rate, system pressure, and arrangement of aerodynamic lenses on the detection efficiency of the ISPM were examined. Results show that the detection efficiency of the ISPM greatly depends on the mass flow rate, and the particle Stokes number. We also found that the optimum Stokes number ranges from 0.4 to 1.9 for the experimental conditions.

비접촉식 지표면 화학 오염 탐지용 라만 분광시스템 설계 및 성능확인 (The Design and Test of the Stand-off Surface Chemical Contaminant Detection System based on Raman Spectroscopy)

  • 고영진
    • 한국군사과학기술학회지
    • /
    • 제22권3호
    • /
    • pp.433-440
    • /
    • 2019
  • In order to detect toxic chemical spread on field ground, we developed stand-off Raman spectrometer system which employed a deep UV laser. In this paper, the design and specification of various components in the spectrometer system are described. Some results when the detection system was tested on the outdoor roads are shown, which may help researching stand-off chemical detectors based on Raman spectroscopy.

전기비저항을 이용한 지반오염누출감지시스템 개발 (Subsurface Contaminant Leak Detection System using Electrical Resistivity Measurement)

  • 박준범;오명학;이주형
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 지반환경 및 준설매립에관한 학술세미나
    • /
    • pp.42-71
    • /
    • 2001
  • Leakage detection system can possibly locate leak point without laboratory analysis. Several different types of sensors provide these benefits. But the use of these technologies is not widespread, mainly because of cost. Each of the leakage detection systems available has different advantages and disadvantages. The ideal system would be affordable, durable enough to last through the life of the landfill, automated, and applicable to all types of landfills. The laboratory tests were performed to investigate the relationship between electrical resistivity and the unsaturated subsurface condition and to evaluate the contamination due to leachate based on measuring electrical resistivity. The results of experiment show that the electrical resistivity of soil decreases as moisture density increases. The electrical resistivity of soil decreases as the concentration of leachate in pore fluid increases. These facts indicate that electrical resistivity method can be a promising tool in detecting of leachate. Also, the field model tests were conducted to verify that detection of leachate leak point on detection system using electrical characteristics is accurate. Field model test results of leakage detection system imply that the leakage detection system using electrical characteristics have the great potential of detecting exactly the leak point of leachate.

  • PDF

전기저항 측정기법을 이용한 오염물질 누출감지시스템의 개발: I. 오염물질에 의한 지반의 전기적 특성 변화 (Development of Contaminant Leakage Detection System Using Electrical Resistance Measurement: I. Variations of Electrical Properties of Subsurface due to Contaminants)

  • 오명학;박준범;김영진;홍성완;이용훈
    • 한국지반공학회논문집
    • /
    • 제17권6호
    • /
    • pp.215-224
    • /
    • 2001
  • 본 논문에서는 오염물질에 의해서 지반의 전기적 특성이 변한다는 원리에 의한 매립지의 침출수나 지하저장탱크의 유류 누출을 조기에 감지하는 시스템의 개발가능성을 확인하고자 하였다. 이를 위해 오염물질이 누출되는 상황을 모사한 실내실험을 통하여 전기저항 측정에 의한 오염물질 누출감지 가능성을 평가하였다. 불포화사질토 지반의 전기 저항 측정값은 함수비가 증가함에 따라 지수적으로 감소하는 경향을 보였다. 오염물질이 지반에 주입될 경우에 디젤은 비전도성 물질로 지반의 전기저항을 크게 증가시켰으며, NaCl 용액과 침출수는 전기전도성이 좋기 때문에 지반의 전기저항을 감소시켰다. 오염물질의 누출에 의한 전기저항은 측정전극간격에 따라 감지민감도가 다르게 나타났으며, 디젤의 경우에는 전극간격이 좁을수록, NaCl 용액과 침출수의 경우에는 전극간격이 높을수록 감지민감도가 크게 나타났다.

  • PDF