Gun-Woo Kim;Seo-Yeon Gu;Seok-Jae Moon;Byung-Joon Park
International journal of advanced smart convergence
/
제12권4호
/
pp.126-133
/
2023
Recent advancements in cloud service virtualization technologies have witnessed a shift from a Virtual Machine-centric approach to a container-centric paradigm, offering advantages such as faster deployment and enhanced portability. Container orchestration has emerged as a key technology for efficient management and scheduling of these containers. However, with the increasing complexity and diversity of heterogeneous workloads and service types, resource scheduling has become a challenging task. Various research endeavors are underway to address the challenges posed by diverse workloads and services. Yet, a systematic approach to container orchestration for effective cloud management has not been clearly defined. This paper proposes the DRA-Engine (Dynamic Resource Allocation Engine) for resource scheduling in container orchestration. The proposed engine comprises the Request Load Procedure, Required Resource Measurement Procedure, and Resource Provision Decision Procedure. Through these components, the DRA-Engine dynamically allocates resources according to the application's requirements, presenting a solution to the challenges of resource scheduling in container orchestration.
본 논문에서는 컨테이너 오케스트레이션 플랫폼에 대하여 분석하고자 한다. 공공 클라우드 전환 로드맵 검토에 따라 클라우드 네이티브 전환을 위한 기술로 컨테이너, 마이크로서비스, 컨테이너 오케스트레이션의 중요성이 강조되고 있다. 대표적인 컨테이너 오케스트레이션 도구인 Kubernetes, Docker Swarm, Mesos를 비교하며, 이들의 초기 설치 용이성, 볼륨 관리, 애플리케이션 배포, 장애 관리 등에 대해 분석하고, 이를 통해 각 도구의 장단점과 적용 상황에 따른 고려사항을 파악함으로써, 클라우드 네이티브 전환 로드맵 수립에 도움을 제공하고자 한다.
International Journal of Internet, Broadcasting and Communication
/
제15권4호
/
pp.270-278
/
2023
We propose a container orchestration system for process workloads that combines the potential of big data and machine learning technologies to integrate enterprise process-centric workloads. This proposed system analyzes big data generated from industrial automation to identify hidden patterns and build a machine learning prediction model. For each machine learning case, training data is loaded into a data store and preprocessed for model training. In the next step, you can use the training data to select and apply an appropriate model. Then evaluate the model using the following test data: This step is called model construction and can be performed in a deployment framework. Additionally, a visual hierarchy is constructed to display prediction results and facilitate big data analysis. In order to implement parallel computing of PCA in the proposed system, several virtual systems were implemented to build the cluster required for the big data cluster. The implementation for evaluation and analysis built the necessary clusters by creating multiple virtual machines in a big data cluster to implement parallel computation of PCA. The proposed system is modeled as layers of individual components that can be connected together. The advantage of a system is that components can be added, replaced, or reused without affecting the rest of the system.
클라우드 컴퓨팅 기술의 발전으로 가상 환경을 기반으로 서비스를 제공하는 컨테이너 기술 또한 발전하고 있다. 컨테이너 오케스트레이션 기술은 클라우드 서비스를 위한 핵심적인 요소이며, 대규모로 구성된 컨테이너를 빌드, 배포, 테스트하는데 자동화로 관리하기 위한 중요한 핵심 기술이 되었다. 최초 구글에 의해 설계되었고, 현재 리눅스 재단에 의해 관리되고 있는 쿠버네티스는 컨테이너 오케스트레이션 중에 하나이며 사실상 표준으로 자리 매김을 하고 있다. 하지만 컨테이너 오케스트레이션 중 쿠버네티스의 사용이 증가하고 있음에도 불구하고, 보안 취약점에 의한 사고사례도 또한 증가하고 있다. 이에 본 논문에서는 쿠버네티스의 취약점을 연구하고, 위협 분석을 통해 개발 초기 또는 설계 단계에서부터 보안을 고려할 수 있는 보안 정책을 제안한다. 특히, STRIDE 위협 모델링을 적용하여 보안 위협을 분류함으로써 구체적인 보안 가이드를 제시하고자 한다.
범용 그래픽 처리 장치(General Purpose Graphics Processing Unit, GPGPU)는 최근 고성능 컴퓨팅에서 중요한 역할을 함으로써, 여러 클라우드 서비스 공급업체들은 GPU 서비스를 제공하기 시작했다. 컨테이너를 사용하는 클라우드 환경에서 대부분의 클러스터 오케스트레이션 플랫폼은 정수 개의 GPU를 작업에 할당하고 다른 작업과 이를 공유하는 것을 허용하지 않는다. 이 경우 작업이 GPU에서 코어 및 메모리 등 자원이 집중적으로 필요하지 않다면 GPU 노드의 리소스 사용률이 저하될 수 있다. GPU 가상화는 응용의 동시 수행을 가능하게 하며 자원을 공유할 수 있는 기회를 제공한다. 하지만 응용의 동시 수행 성능은 동시 수행되는 응용의 특성과 노드 안에서 자원 경쟁으로 인한 간섭에 따라 달라질 수 있다. 본 논문은 컨테이너 오케스트레이션 플랫폼인 쿠버네티스(Kubernetes)를 기반으로 다중 서버 생성 및 실행을 통하여 GPU를 공유함으로써 발생할 수 있는 간섭을 측정하기 위한 프레임워크를 제안한다. 본 프레임워크를 통해 다양한 스케줄링 방법으로 GPU에서 여러 작업을 실행함으로써 이에 따른 성능 변화를 조사하였으며, 이를 통해 GPU 메모리 사용량 및 컴퓨팅 리소스만 고려해서는 최적의 스케줄링을 할 수 없음을 보인다. 마지막으로 해당 프레임워크를 사용하여 응용들의 동시 실행에 따라 발생한 간섭을 측정한다.
클라우드 서비스 시장은 온프레미스 환경에서 클라우드 컴퓨팅 환경으로의 전환에 힘입어 급속도로 성장하고 있고, 국내 클라우드 소프트웨어 시장 또한 전 세계적인 흐름에 따라 2022년까지 연평균 약 15%로 성장할 것으로 예상한다. 국내에서는 정부 주도하에 오픈소스 소프트웨어를 활용한 개방형 클라우드 플랫폼을 제공하고 있으며, 2019년까지 개방형 클라우드 플랫폼의 안정성 및 기능을 강화하고, 이종 클라우드 인프라 기반으로 운영되고 응용 소프트웨어의 전체 라이프사이클 관리 기능을 제공하는 세계적 수준의 개방형 클라우드 플랫폼 기반 및 개발자 지원환경을 제공하고자 한다. 이에 따라 본 연구에서는 개방형 클라우드 플랫폼 생태계를 활성화하기 위해 컨테이너 자동편성 플랫폼의 접목을 제시하고, 이를 통해 개방형 클라우드 플랫폼에서의 CaaS 활용 방안을 제시한다. 최종적으로 사용자에게 Application Runtime 및 Container Runtime을 제공함으로써 두 개의 플랫폼이 서로 상생할 수 있는 생태계의 방향성을 제시한다는 점에서 의의가 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권3호
/
pp.1063-1075
/
2022
In recent years, container techniques have been broadly applied to cloud computing systems to maximize their efficiency, flexibility, and economic feasibility. Concurrently, studies have also been conducted to ensure the security of cloud computing. Among these studies, moving-target defense techniques using the high agility and flexibility of cloud-computing systems are gaining attention. Moving-target defense (MTD) is a technique that prevents various security threats in advance by proactively changing the main attributes of the protected target to confuse the attacker. However, an analysis of existing MTD techniques revealed that, although they are capable of deceiving attackers, MTD techniques have practical limitations when applied to an actual cloud-computing system. These limitations include resource wastage, management complexity caused by additional function implementation and system introduction, and a potential increase in attack complexity. Accordingly, this paper proposes a software-defined MTD system that can flexibly apply and manage existing and future MTD techniques. The proposed software-defined MTD system is designed to correctly define a valid mutation range and cycle for each moving-target technique and monitor system-resource status in a software-defined manner. Consequently, the proposed method can flexibly reflect the requirements of each MTD technique without any additional hardware by using a software-defined approach. Moreover, the increased attack complexity can be resolved by applying multiple MTD techniques.
We implemented a real-time cloud robotics application by offloading robot navigation engine over to 5G Mobile Edge Computing (MEC) sever. We also ran a fleet management system (FMS) in the server and controlled the movements of multiple robots at the same time. The mobile robots under the test were connected to the server through 5G SA network. Public 5G network, which is already commercialized, has been temporarily modified to support this validation by the network operator. Robot engines are containerized based on micro-service architecture and have been deployed using Kubernetes - a container orchestration tool. We successfully demonstrated that mobile robots are able to avoid obstacles in real-time when the engines are remotely running in 5G MEC server. Test results are compared with 5G Public Cloud and 4G (LTE) Public Cloud as well.
쿠버네티스는 컨테이너 통합 관리를 위한 대표적인 오픈소스 기반 소프트웨어로, 컨테이너에 할당된 자원을 모니터링하고 관리하는 핵심적인 역할을 한다. 컨테이너 환경이 보편화됨에 따라 컨테이너를 대상으로 한 보안 위협이 지속적으로 증가하고 있으며, 대표적인 공격으로는 자원 고갈 공격이 있다. 이는 악성 크립토마이닝 소프트웨어를 컨테이너 형태로 배포하여 자원을 탈취함으로써, 자원을 공유하는 호스트 및 다른 컨테이너의 동작에 영향을 끼친다. 선행 연구는 자원 고갈 공격의 탐지에 초점이 맞춰져 있어 공격 발생 시 대응하는 기술은 부족한 실정이다. 본 논문은 쿠버네티스 환경에서 구동되는 컨테이너를 대상으로 한 자원 고갈 공격 및 악성 컨테이너를 탐지하고 대응하기 위한 강화학습 기반 동적 자원 관리 프레임워크를 제안한다. 이를 위해, 자원 고갈 공격 대응 관점에서의 강화학습 적용을 위한 환경의 상태, 행동, 보상을 정의하였다. 제안한 방법론을 통해, 컨테이너 환경에서의 자원 고갈 공격에 강인한 환경을 구축하는 데 기여할 것으로 기대한다.
The importance of geospatial information is increasingly highlighted in the defense domain. Accurate and up-to-date geospatial data is essential for situational awareness, target analysis, and mission planning in millitary operations. The use of high-resolution geospatial data in military operations requires large storage and fast image processing capabilities. Efficient image processing is required for tasks such as extracting useful information from satellite images and creating 3D terrain for mission planning, In this paper, we designed a cloud-based operational situation mixed reality visualization system that utilizes large-scale geospatial information distributed processed on a cloud server based on the container orchestration platform Kubernetes. We implemented a prototype and confirmed the suitability of the design.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.