
International Journal of Internet, Broadcasting and Communication Vol.15 No.4 270-278 (2023)

http://dx.doi.org/10.7236/IJIBC.2023.15.4.270

Copyright© 2023 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of

the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

A Container Orchestration System for Process Workloads

Jong-Sub Lee*, Seok-Jae Moon**

*Professor, College of General Education, SeMyung University, Jecheon, Korea

**Professor, Department of Artificial Intelligence Institute of Information Technology, KwangWoon

University, Korea

e-mail : 99jslee@semyung.ac.kr, msj8086@kw.ac.kr

Abstract

We propose a container orchestration system for process workloads that combines the potential of big data

and machine learning technologies to integrate enterprise process-centric workloads. This proposed system

analyzes big data generated from industrial automation to identify hidden patterns and build a machine

learning prediction model. For each machine learning case, training data is loaded into a data store and

preprocessed for model training. In the next step, you can use the training data to select and apply an

appropriate model. Then evaluate the model using the following test data: This step is called model

construction and can be performed in a deployment framework. Additionally, a visual hierarchy is constructed

to display prediction results and facilitate big data analysis. In order to implement parallel computing of PCA

in the proposed system, several virtual systems were implemented to build the cluster required for the big data

cluster. The implementation for evaluation and analysis built the necessary clusters by creating multiple virtual

machines in a big data cluster to implement parallel computation of PCA. The proposed system is modeled as

layers of individual components that can be connected together. The advantage of a system is that components

can be added, replaced, or reused without affecting the rest of the system.

Keywords: Process Workload, Cloud Computing, Container Orchestration, Machine Learning, Metadata Registry

1. INTRODUCTION

In the field of industrial automation based on distributed cloud computing, information exchange is essential,

and techniques used to improve business process models and services through it are necessary [1]. To do this,

it is necessary to manage, process, and analyze the data collected during manufacturing production.

Accordingly, the service of big data and machine learning technology is needed in the field of industrial

automation [2]. In this case, the most important step is to establish a standard and resilient architecture that

integrates metadata-based big data and machine learning technologies for efficient industrial data analysis [3].

We propose a container orchestration system for process workloads for enterprise process-oriented workload

integrated execution by integrating the potential of big data and machine learning technology. The proposed

system consists of 4 layers: Process Workload, Functional Layer, Information Layer, and Asset Integration.

IJIBC 23-4-32

Manuscript Received: october. 4, 2023 / Revised: october. 21, 2023 / Accepted: october. 27, 2023

Corresponding Author: msj8086@kw.ac.kr

Tel: Fax: +82-10-916-4751

Author’s affiliation: Professor, Department of Artificial Intelligence Institute of Information Technology, KwangWoon University, Korea

-*-****

International Journal of Internet, Broadcasting and Communication Vol.15 No.4 270-278 (2023) 271

Since the data generated in the process creation stage are heterogeneous in form and use, the proposed system

can function to integrate them into a common information model. And it applies a standard metadata protocol

to ensure heterogeneous data exchange. This is because data is described through semantics and becomes

information, so the information model was constructed by standardizing the metadata registry. Various types

of data storage are used to store process data, metadata and analytical models. In addition, this proposed system

analyzes big data generated from industrial automation to identify hidden patterns and builds a machine

learning (ML) prediction model. For each machine learning use case, the training data is loaded into a data

store and configured to be pre-processed for model training. The next step is to use the training data to select

and apply an appropriate model. The model is then evaluated using the following test data. This step is called

model building, and can be performed in a batch processing framework. In addition, a service that configures

a visual layer to display prediction results and facilitate big data analysis is also configured. The structure of

this thesis is as follows. Chapter 2 describes related research, and Chapter 3 describes the components and

operating scenarios of the proposed system. In Chapter 4, application cases and comparative analysis are

described, and finally, in Chapter 5, conclusions are made.

2. RELATED WORK

Existing machine learning algorithms struggle to process the massive amounts of data generated by smart

production systems. This is because it is designed under the assumption that the data set and model parameters

must be completely loaded into memory [5]. Scalable ML algorithms are a common way to solve this problem,

as they are well-suited to handling large datasets and/or models with many parameters. In particular, distributed

ML algorithms represent most state-of-the-art scalable ML methods [6]. It can be split into two groups of

algorithms that use different methods of parallelism: data parallelism and model parallelism. In the first group,

data sets are divided into smaller pieces that are stored on nodes of a computer cluster. All parameters of the

model are partially updated simultaneously at each node and combined afterwards. In the second group, the

model parameters are divided into subsets and updated simultaneously at each node using the full data set.

There are also several hybrid methods in which the dataset as well as the model parameters are partitioned and

distributed to clusters [7, 8]. In recent years, several tools have been developed that allow the use of distributed

ML algorithms on big data. Mahout, Spark MLlib and H2O are most used in industry and academia [9]. Each

of these can be combined with different distributed data processing engines. For example, Mahout can work

with MapReduce, Spark, and H2O. These frameworks represent a distributed batch (offline) learning paradigm,

where models are trained on a training dataset consisting of historical data before being used to process new

data [9]. In contrast, the stream (online) paradigm is required when an algorithm learns from data arriving as

a stream. A relatively young framework called Samoa provides these ML algorithms in its distributed stream

processing engines Storm, S4 and Samza [9]. A very detailed comparison of the mentioned four distributed

ML frameworks in terms of algorithm availability, scalability and speed is discussed in [10].

3. PROPOSED SYSTEM: CONTAINER ORCHESTRATION SYSTEM FOR

PROCESS WORKLOADS TITLE AND AUTHOR INFORMATION

3.1 System Component

In this chapter, we propose a container orchestration system for process workloads for integrated execution

of process-oriented workloads by integrating big data and machine learning technologies. It is common for

most process workload services to use batch data to build models that will later be deployed for online

272 A Container Orchestration System for Process Workloads

prediction on stream data in industrial use cases. The system proposed in this paper consists of different layers

as shown in Figure 1.

Figure 1. The Conceptual Architecture

◼ Process Workload. In this layer, business requirements, use case descriptions and the workload to be solved

are defined. The results of data analysis for the process help stakeholders make appropriate decisions and

optimize. In particular, the connectivity of the system for data sharing must be expanded and visually visible.

Visual interfaces and dashboards are important for grasping difficult concepts or identifying hidden patterns

within process data. The visualization layer displays prediction results and allows data scientists to add

expertise in the form of semantic annotations to facilitate analysis tasks. So, this tier includes interactive

analytics software, dashboards and client applications.

◼ Functional Layer. This layer is about analyzing data to uncover hidden patterns and building ML predictive

models. Training data for each machine learning use case is loaded from a data store and pre-processed for

model training. The next step is to select and apply an appropriate model using the training data. The model is

then evaluated using the training data. These steps are called model construction and can be performed in

distributed batch processing. Once a trained model is determined to be suitable for solving a problem on a

business process workload, it can be deployed in distributed stream processing for online prediction on stream

data.

◼ Information Layer. In this layer, shared data in the process is provided using semantic techniques. Semantics

are applied in a metadata registry or a standardized information model for a particular branch. Shared data is

maintained at this layer for later access and analysis. Therefore, in this paper, EMRA, an extended version of

metadata, is applied. EMRA uses various types of data storage systems to store process data, metadata analysis

and analysis models. These storage systems must be simultaneously scalable and highly coupling-tolerant.

International Journal of Internet, Broadcasting and Communication Vol.15 No.4 270-278 (2023) 273

◼ Asset Integration Layer. In this layer, components such as machines, people, products, and engineering

systems are included. These components represent the company's primary data sources. The data generated by

this layer is heterogeneous in form and purpose and needs to be unified through a common information model.

Also, the transition from the physical environment to the virtual environment occurs at this layer. This includes

the infrastructure and resources to capture digital/analog signals and make them available on the network as

form data.

3.2 Sequence Diagram

Figure 2 show the flow of the proposed system in a sequence diagram.

Figure 2. Sequence Diagram of the Proposed System

3.3 Principal Component Analysis

This section demonstrates the benefits of the proposed architecture for specific application cases related to

data analysis in enterprise environments. Data analysis often requires learning a system model from historical

data and using the learned model for evaluation or processing of current process data. An example of such a

model is the Principal Component Analysis (PCA) matrix, which has versatile enterprise applications such as

dimension reduction and condition monitoring approaches [32–34]. The PCA matrix can be obtained by k =

1… It is computed from the vector 𝑥𝑘 of historical measurements recorded at time instances of n.

∑ 𝑥 =
1

𝑛−1
∑ (𝑥𝑘 − 𝜇𝑥)(𝑥𝑘 − 𝜇𝑥

𝑛
𝑘=1)𝑇 (1)

𝜇𝑥 =
1

𝑛
∑ 𝑥𝑘

𝑛
𝑘=1 (2)

Calculating the covariance matrix Σx requires O(𝑛 × 𝑛2c) operations, where nc denotes the number of

274 A Container Orchestration System for Process Workloads

components in the past measurement vector. The automated computation for singular value decomposition is

of the order of O(𝑛3c) [35]. In big data applications, a large number of past measurement vectors are evaluated

so that the nc << n condition holds. In these applications, the computational effort for SVD is negligible

compared to that for computing the covariance matrix. Parallel computation of the covariance matrix Σx is

achieved using the relationship between Equations (3), (4), (5), (6) and Equation (7). Computing the sum of

S1 and S2 on multiple workers is straightforward, but the entire covariance matrix Σx is quickly computed on

a single machine in conjunction with equation (6).

∑ 𝑥 =
1

𝑛−1
∑ (𝑥𝑘 − 𝜇𝑥)(𝑥𝑘 − 𝜇𝑥

𝑛
𝑘=1)𝑇 (3)

=
1

𝑛−1
∑ (𝑥𝑘𝑥𝑘

𝑇 + 𝑥𝑘𝜇𝑥
𝑇 − 𝜇𝑥𝑥𝑘

𝑇 − 𝜇𝑥𝜇𝑥
𝑇)𝑛

𝑘=1 (4)

 =
1

𝑛−1
∑ (𝑥𝑘𝑥𝑘

𝑇) − 𝑛
𝑘=1

1

𝑛(𝑛−1)
(∑ 𝑥𝑘

𝑛
𝑘=1)(∑ 𝑥𝑘

𝑛
𝑘=1) (5)

=
1

𝑛−1
𝑆2 −

1

𝑛(𝑛−1)
𝑠1𝑠1

𝑇 (6)

𝑆1 = ∑ 𝑥𝑘
𝑛
𝑘=1 𝑎𝑛𝑑 𝑆2 = ∑ (𝑥𝑘𝑥𝑘

𝑇𝑛
𝑘=1) (7)

Computing 𝑆1 and 𝑆2 on multiple workers is straightforward, but the entire covariance matrix Σx is quickly

computed on a single machine by linking Equation (6).

4. APPLICATION CASES AND COMPERATIVE ANALYSIS

In this chapter, in order to implement parallel computing of PCA in the proposed system, several virtual

systems were implemented to build clusters necessary for big data clusters.

-Implementation of PCA: To implement the parallel computation of PCA, several virtual machines were

created in the big data cluster to build the necessary cluster. VM resource specifications in Table 2 are applied.

Since Figure 1 does not show many details of the platform presented, information on the technology,

infrastructure and configuration used is shown in Table 1.

Table 1. VM Resource Specification

Item Details

Processor

Memory

Storage

Network

OS

Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz - 8

Virtual CPUs (4 sockets with 2 cores per socket)

32 GB

512 GB HDD

1 Gbit/s network card

Ubuntu 16.04 xenial

Table 2. Cluster Description

Category Framework Description

Data Ingestion Kafka Cluster 3 brokers, 20 partitions for the input and output

topics

Data Storage Hadoop Cluster 1 name node and 3 data nodes

International Journal of Internet, Broadcasting and Communication Vol.15 No.4 270-278 (2023) 275

MongoDB

Influx DB

single node

single node

Batch Processing Spark Cluster 1 master node and 3 workers

Stream Processing Kubernetes Cluster 1 master and 3 nodes

The PCA algorithm was implemented on a big data platform with a data set of approximately 36 million

historical measurement vectors (each with 41 components) consisting of enterprise process sensor data

generated using the TESIM simulation model [36]. The implementation was carried out in two modes.

A) Batch Processing Mode (PCA Model Building): In this mode, the training data set is uploaded as a

distributed Spark data frame in the HDFS system, and the number of different Spark workers is

calculated. The PySpark PCA class is used to train a model to project vectors into a low-dimensional

space. The result of this calculation process is a 41*20 PCA matrix, which will later be used for PCA

stream processing.

B) Stream Processing Mode (PCA Model Application): Since Kafka is already used as a stream platform

in big data platforms, Kafka Streams is a good and simple option for developing stream (real-time)

applications to take advantage of the Kafka platform. Stream data (a vector of 41 components) is

collected from the TESim OPC UA server simulator and continuously pushed to a Kafka topic. A

Kafka Streams application consumes data from a Kafka input topic, calculates the low-dimensional

space for each input (vector) based on the PCA matrix, and then sends the result to another Kafka

output topic. This application is developed in Java and uses the Kafka Stream library. However, for

simplicity and portability, Java applications are packaged as Docker images that can be deployed in a

variety of environments. Dockerized Kafka Streams applications can also run anywhere using

multiple Instances (parallel containers), but require a distributed platform for orchestration and

automatic scaling. A Kubernetes cluster was used for this.

C) Evaluation: To evaluate the batch processing part of the proposed big data platform, the PCA matrix

was computed in parallel on multiple workers in the Apache Spark Framework, and each worker's

unique number of workers and cores were evaluated. For each experimental setting, i.e. each

combination of operator and core, n ≥ 36 million past measurement vectors with nc = 41 components

were used to compute the PCA matrix. Batch processing throughputs of 11859 and 75203 processed

records per second were achieved using a single core and eight cores, respectively, in a single worker.

In Figure 3, using a parallel implementation with 3 workers (8 cores each) the throughput is improved

to 220238 processed records per second. That is, 2.92 times faster.

276 A Container Orchestration System for Process Workloads

Figure 3. PCA Model Building: Batch Processing Throughput

The introduced architecture is not limited to learning process models, but is tailored to the application of

learned models. After learning a PCA model, we can deploy and apply the model on individual processing

nodes to achieve dimensionality reduction on local nodes. For this purpose, the Kafka system creates a subject

and distributes it into many partitions among intermediaries, one partition for each plant or asset, and enables

parallel processing on these partitions. Stream processing is evaluated on continuous data of measurement

vectors with nc = 41 components at several instances (1, 2, 3, 10, 20 instances). According to the results, using

20 stream application instances instead of a single application instance can increase the number of records

processed per second by 18.6 times from 2736 to 50973 Fi

Figure 4. Realtime PCA Application: Stream Processing Throughput

One thing to note here is that in some cases, for example, the performance factor may outweigh the instance

count. When the number of instances is a multiple of the number of Kafka brokers (3 in the setup), the

interpretation of this is that the computation will be split evenly between the application instances. Finally, it

should be taken into account that the parallelization factor can be adjusted based on available resources. For

example, the performance of a stream application starts to decrease by 40 (3 brokers) because the number of

Kafka brokers is constant. So, you need to scale your Kafka cluster to meet your requirements.

5. CONCLUSION

In this paper, we proposed a container orchestration system for process workloads for enterprise-wide

International Journal of Internet, Broadcasting and Communication Vol.15 No.4 270-278 (2023) 277

process-oriented workload integration by combining the potential of big data and machine learning

technologies. The proposed system satisfies the following requirements. First, it uses an integrated OPC UA

information model with semantic information to meet data integration requirements. Depending on the process

data description, the machine's technology, components, and method of executing a given task, multiple

machines can share the same information model and easily communicate and use mutual services. Additionally,

a schema registry in the message broker system and/or data store facilitates data integration between higher-

level systems. Second, the system allows data to be collected not only from legacy systems and tools, but also

from other types of machines using a variety of protocols. Supports data collection and processing in both

batch and stream modes. Third, all frameworks and systems used for implementation, including Kafka, HDFS,

MongoDB, InfluxDB, Spark, and Kubernetes, are distributed, scalable, and redundant across various layers.

Fourth, the proposed system is modeled as layers of individual components that can be connected to each other.

Future research tasks should also consider security aspects from the asset layer (supported by OPC UA) to the

business layer by activating data security technologies such as encryption, authentication, and authorization

functions in the framework.

ACKNOWLEDGEMENT

This paper was supported by the SeMyung University Research Grant of 2023.

REFERENCES

[1] F. Li and G. Fang, “Process-Aware Accounting Information System Based on Business Process Management,”

Wireless Communications and Mobile Computing, vol. 2022. Hindawi Limited, pp. 1–15, 09-May 2022.

DOI: https://doi.org/10.1155/2022/7266164

[2] T. Czvetkó, A. Kummer, T. Ruppert, and J. Abonyi, “Data-driven business process management-based

development of Industry 4.0 solutions,” CIRP Journal of Manufacturing Science and Technology, vol. 36. Elsevier

BV, pp. 117–132, Jan 2022.

DOI: https://doi.org/10.1016/j.cirpj.2021.12.002

[3] R. Pedral Sampaio, A. Aguiar Costa, and I. Flores-Colen, “A Systematic Review of Artificial Intelligence Applied

to Facility Management in the Building Information Modeling Context and Future Research Directions,”

Buildings, vol. 12, no. 11. MDPI AG, p. 1939, 10 Nov 2022.

DOI: https://doi.org/10.3390/buildings12111939

[4] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine learning for big data processing,” EURASIP

Journal on Advances in Signal Processing, vol. 2016, no. 1. Springer Science and Business Media LLC, 28 May

2016.

DOI: https://doi.org/10.1186/s13634-016-0355-x

[5] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on big data: Opportunities and challenges,”

Neurocomputing, vol. 237. Elsevier BV, pp. 350–361, May 2017.

DOI: https://doi.org/10.1016/j.neucom.2017.01.026

[6] M. Nasser Al-Andoli, S. Chiang Tan, and W. Ping Cheah, “Distributed parallel deep learning with a hybrid

backpropagation-particle swarm optimization for community detection in large complex networks,” Information

Sciences, vol. 600. Elsevier BV, pp. 94–117, Jul 2022.

DOI: https://doi.org/10.1016/j.ins.2022.03.053

[7] E. Ezugwu et al., “A comprehensive survey of clustering algorithms: State-of-the-art machine learning

applications, taxonomy, challenges, and future research prospects,” Engineering Applications of Artificial

Intelligence, vol. 110. Elsevier BV, p. 104743, Apr 2022.

DOI: https://doi.org/10.1016/j.engappai.2022.104743

278 A Container Orchestration System for Process Workloads

[8] N. Richter, T. M. Khoshgoftaar, S. Landset, and T. Hasanin, “A Multi-dimensional Comparison of Toolkits for

Machine Learning with Big Data,” 2015 IEEE International Conference on Information Reuse and Integration.

IEEE, Aug 2015.

DOI: https://doi.org/10.1109/IRI.2015.12

[9] G. D. F. Morales and A. Bifet, “Samoa: scalable advanced massive online analysis.” Journal of Machine Learning

Research, 2015.

DOI: https://doi.org/10.5555/2789272

[10] A.Shahraki, M. Abbasi, A. Taherkordi, and A. D. Jurcut, “A comparative study on online machine learning

techniques for network traffic streams analysis,” Computer Networks, vol. 207. Elsevier BV, p. 108836, Apr 2022.

DOI: https://doi.org/10.1016/j.comnet.2022.108836

