• Title/Summary/Keyword: Contact-loading

Search Result 523, Processing Time 0.021 seconds

Ergonomic Evaluation of Trunk-Forearm Support Type Chair

  • Lim, Seung Yeop;Won, Byeong Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.143-153
    • /
    • 2014
  • Objective: The aim of this study is to investigate the effects of trunk-forearm supported sitting on trunk flexion angle, trunk extensor fatigue and seat contact pressure. Background: The relationship between sitting posture and musculoskeletal disorders of the trunk extensor fatigue and seat contact pressure has been documented. The trunk-forearm support type ergonomic chair was devised from the fact that trunk-forearm support has been reported to reduce trunk extensor activity and discomfort. Method: Using three different sitting postures, upright ($P_1$), trunk-forearm supported ($P_2$) and normal sitting ($P_3$), six healthy subjects participated in the study. Motion capture system was used to collect head and trunk flexion angle, and surface electromyography (sEMG) was used to collect myoelectric signal of upper trapezius, lower trapezius, erector spinae, multifidus, and pressure mat system was used to measure seat contact pressure. Results: When trunk and forearm were supported by the ergonomic chair, higher head flexion angle showed upright > trunk-forearm supported > normal in order, and muscle fatigue showed less than upright and normal sitting. Mean seat contact pressure decreased 19% than upright sitting. But muscle fatigue was not affected by each condition. Conclusion: Trunk-forearm supported sitting of the ergonomic chair showed positive effect in respect of trunk and head flexion angle, trunk extensor fatigue, seat contact pressure. To acquire comprehensive understanding of the effectiveness of the ergonomic chair, further studies such as anatomical effects from measurement of external applied loading effect to the body from interface pressure analysis are required. Application: The results of the publishing trend analysis might help physiological effects of trunk-forearm support type chair.

Strength Assessment of High-Pressure Ball Valve for Topside Process Unit (해양플랜트 탑사이드용 고압 볼밸브에 대한 구조 안전성 평가)

  • Oh, Jeong-Sik;Kim, Yooil;Jeong, Nakshin;Kim, Sangmyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.100-108
    • /
    • 2016
  • A high-pressure ball valve was developed, and both the structural strength and sealing performance were assessed based on a nonlinear finite element analysis. Different parts were modeled with solid elements and assembled, taking into account both contact and sliding effects. Three different loading scenarios were analyzed, including a high-pressure closure test and fire and shell test conditions. The structural safety of each part was checked under each loading condition, and the sealing performance was also investigated to validate the performance of the valve.

Effects of effluent recycling on the operating performance of UASB reactor (유출수 반송이 UASB 반응조 운전효율에 미치는 영향)

  • 이헌모;양병수
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.299-310
    • /
    • 1993
  • This study was aimed to evaluate the effects of effluent recycling on the UASB reactor performances at the various organic loading rates and influent substrate concentrations. The organic removal efficiency of the reactors operated with effluent recycle were above 85%. However, the efficiencies of the reactors operated without the recycle were below 40% even though the effort to increase the efficiencies was made by changing the influent substrate concentrations and the organic loading rates, and introducing the effluent recycle at the final stage of the experiment. It was realized that the certain amount of effluent recycling from the start-up stage in UASB reactors seemed to be necessary to provide the effective contact chances between the substrate and granular sludge for better performances of the UASB process.

  • PDF

Subsurface stress field beneath the cam-roller contact surface under elastohydrodynamic lubrication and tangential loading (탄성유체윤활 및 접선하중 상태에서 캠-롤러 접촉표면의 내부 응력장)

  • Kim Hyung-Ja;Kim Young-Dae;Park Kyung-Dong;Koo Young-Pil
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.261-268
    • /
    • 2004
  • For cam and roller-follower contacting surfaces, the effect of tangential loading on the subsurface stress field at an elaso-hydrodynamic lubrication condition has been studied numerically. As tangential load increases, the subsurface stress field extended more widely to the direction of the tangential load. The positions of the maximum shear stress and the maximum effective stress are getting closer to the surface with the increasing tangential load. The tangential load at the elasto-hydrodynamic lubrication condition is of little consequence to the subsurface stress field.

  • PDF

An Analysis on Surface Cracking Due to Thermomechanical Loading

  • Kim, S.S.;Lee, K.H.;Lee, S.M.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.172-176
    • /
    • 1995
  • This study deals with thermomechanical cracking between the friction surface and the interior of the brake disc. Analytical model considered in this study was a semi-infinite solid subjected to the thermal loading of an asperity moving with a high speed. The temperature field and the thermal stress state were obtained and discussed on the basis of Von Mises and Tresca Yielding Criterion. Analytical results showed that the dominant stress in cracking of friction brake is thermal stress and cracking location is dependent on the friction coefficient of contact and Peclet number. On the basis of analytical results thermomechanical cracking model is proposed.

Impact Damage of Brittle Materials by Small Spheres (ll ) (취성재료의 소구충돌에 의한 충격손상 (ll))

  • Kim, Mun-Saeng;Sin, Hyeong-Seop;Lee, Hyeon-Cheol;U, Su-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.153-159
    • /
    • 2002
  • Brittle materials such as ceramics and glasses show fragile fracture due to the low toughness and the crack sensitivity. When brittle materials are subjected to impact loading by small spheres, high contact pressure occurs to the surface of the specimen. Local damage is subsequently generated in the specimen. This local damage is a dangerous factor which gives rise to the final fracture of structures. In this research, impact damage of soda-lime glass plates by small spheres was evaluated by considering the effects of impact directions of indenter, pressure condition of specimen and residual strength after impact loading.

Structural Integrity Evaluation for the Reactor Coolant Pump Shaft Seal Assembly (원자로냉각재펌프 축밀봉장치에 대한 구조적 건전성 평가)

  • Kim, Minsu;Kim, Minchul;Kim, Oaksug;Chung, Sungho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.44-50
    • /
    • 2017
  • The shaft seal of the reactor coolant pump is installed on the upper side of the rotating shaft of the pump to seal the reactor coolant from flowing out between the rotating shaft and the non-rotating parts. In this study, the loading conditions for the normal operation and faulted conditions are identified and structural integrity evaluation is performed using the finite element stress analysis for the sealing apparatus of the APR 1400 reactor coolant pump. It is confirmed that the stress analysis results satisfy the design criteria at all loading conditions.

A Study on Fatigue Crack Propagation of Rail Steel under Constant and Mixed Mode Variable Amplitude Loadings

  • Kim, Chul-Su;Chung, Kwang-Woo
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.71-76
    • /
    • 2012
  • Recently, axle load, operating speed and traffic density on railroads have had a tendency to increase and thereby cause additional pressure applied on used track. These operating conditions frequently result in service failure due to wear caused by wheel-rail contact and fatigue damage under cyclic loading. Among rail defects, the transverse crack, which has been the most dangerous type of fatigue damages, is developed from the subsurface crack near the rail running face and grows perpendicular to the rail surface. Therefore, it is necessary to investigate systematically the growth behavior of transverse crack for rail steel under mixed mode. In this study, the fatigue crack growth behavior of the transverse crack in rail steel was experimentally investigated under mixed-mode variable amplitude loadings.

Effect of Bubble Size in DAF (DAF에서 기포크기의 영향)

  • Park, Yong-Hyo;Han, Moo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.528-533
    • /
    • 2003
  • Bubble size is one of the most important parameters affecting DAF (Dissolved-Air-Flotation) process. It is generally known that small bubbles are preferred. However, the fact seems to be based on the particle removal efficiency at contact zone only, without considering separation zone. Besides, the effect of bubble size on the overall DAF process has not been fully investigated yet. Therefore, the effect of bubble size on collision efficiency, collision chances, and surface loading rate is calculated using theoretical models, and the results are discussed in this paper.

RC beams retrofitted using external bars with additional anchorages-a finite element study

  • Vasudevan, G.;Kothandaraman, S.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.415-428
    • /
    • 2015
  • Study on flexural retrofitting of RC beams using external bars with additional intermediate anchorages at soffit is reported in this paper. Effects of varying number of anchorages in the external bars at soffit were studied by finite element analysis using ANSYS 12.0 software. The results were also compared with available experimental results for beam with only two end anchorages. Two sets of reference and retrofitted beam specimens with two, three, four and five anchorages were analysed and the results are reported. FE modeling and non-linear analysis was carried out by discrete reinforcement modeling using Solid65, Solid45 and Link8 elements. Combin39 spring elements were used for modeling the frictional contact between the soffit and the external bars. The beam specimens were subjected to four-point bending and incremental loading was applied till failure. The entire process of modeling, application of incremental loading and generation of output in text and graphical format were carried out using ANSYS Parametric Design Language.