• Title/Summary/Keyword: Contact state and direction

Search Result 27, Processing Time 0.032 seconds

Design of Ohmic Contact RF MEMS Silicon Switch with High Isolation at High Frequencies (고주파에서 높은 신호 격리도를 갖는 접촉식 RF MEMS 스위치의 설계)

  • Lee, Yong-Seok;Jang, Yun-Ho;Kim, Jung-Mu;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1509_1510
    • /
    • 2009
  • This paper presents the design and simulation results of ohmic contact RF MEMS silicon switch with a high isolation at high frequencies along with the position of a contact part, initial off-state and intermediate off-state including the state where a contact part is placed right over a signal line of coplanar waveguide (CPW). The ohmic contact part is connected with comb drives made of high resistivity single crystalline silicon. The released contact part is $30{\mu}m$ apart from the edge of signal line on the glass substrate along the lateral direction (x-direction) at initial off-state. The electrostatic force of the comb electrode creates the x-directional movement thus initial state is converted to the intermediate off-state. The initial off-state of the switch results in isolations of -31 dB, -24 dB and reflections of -0.45 dB, -0.67 dB at 50 GHz and 110 GHz, respectively. It shows the isolation degradation when the contact part moves right over the signal line of CPW like an initial off-state of a conventional MEMS switch. The isolations and reflections are -31 dB, -24 dB and -0.50 dB, -1.31 dB at 50 GHz and 110 GHz, respectively at the intermediate off-state.

  • PDF

A Study on the Edge Following of Task Object by Industrial Robot Using F/T Sensor (F/T Sensor를 이용한 산업용 로봇에 의한 물체 선단추적에 관한 연구)

  • 최성락;정광조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.26-34
    • /
    • 1998
  • In this paper, a force control algorithm for edge following task is suggested. Through the contact state modeling between rigid part and end-effector of robot, contact force and contact angle that are essencial parameters to build the control strategies for following movement of end-effector are derived. From these two parameters, we discriminate the every contact state into 8 cases and calculate the new moving position and direction simply. For the experiment. RX90 robot from Staubli with robot language V$^{+}$ is applied and F/T sensor is attached to the wrist of robot with RCC. Finally, 3 edge following experiments including the following of corner point are executed with successful results.s.

  • PDF

The Subsurface Stress Field Caused by Both Normal Loading and Tangential Loading

  • Koo Young- Phi;Kim Tae-Wan;Cho Yong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1967-1974
    • /
    • 2005
  • The subsurface stress field caused by both normal loads and tangential loads has been evaluated using the rectangular patch solution. The effect of tangential loading on the subsurface stress field has been investigated in detail for both the cylinder-on-cylinder contact and a spur gear teeth contact. For the cylinder-on-cylinder contact, the subsurface stress fields are moved more to the direction of tangential loads and the positions where the maximum stress occur are getting closer to the surface with the increasing tangential loads. The subsurface stress fields of the gear teeth contact are expanded more widely to the direction of tangential loads with the increasing tangential loads. The friction coefficient of a gear teeth contact is low because they are operated in a lubricated condition, and therefore surface tractions in the EHL condition hardly affect on the subsurface stress field.

Effects of sizes and mechanical properties of fuel coupon on the rolling simulation results of monolithic fuel plate blanks

  • Kong, Xiangzhe;Ding, Shurong;Yang, Hongyan;Peng, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1330-1338
    • /
    • 2018
  • High-density UMo/Zr monolithic nuclear fuel plates have a promising application prospect in high flux research and test reactors. The solid state welding method called co-rolling is used for their fabrication. Hot co-rolling simulations for the composite blanks of UMo/Zr monolithic nuclear fuel plates are performed. The effects of coupon sizes and mechanical property parameters on the contact pressures between the to-be-bonded surfaces are investigated and analyzed. The numerical simulation results indicate that 1) the maximum contact pressures between the fuel coupon and the Zircaloy cover exist near the central line along the plate length direction; as a whole the contact pressures decrease toward the edges in the plate width direction; and lower contact pressures appear at a large zone near the coupon corner, where de-bonding is easy to take place in the in-pile irradiation environments; 2) the maximum contact pressures between the fuel coupon and the Zircaloy parts increase with the initial coupon thickness; after reaching a certain thickness value, the contact pressures hardly change, which was mainly induced by the complex deformation mechanism and special mechanical constitutive relation of fuel coupon; 3) softer fuel coupon will result in lower contact pressures and form interfaces being more out-of-flatness.

Finite element modeling of contact between an elastic layer and two elastic quarter planes

  • Yaylaci, Murat;Avcar, Mehmet
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • In this study, a two dimensional model of receding contact problem has been analyzed using finite element method (FEM) based software ANSYS and ABAQUS. For this aim finite element modeling of elastic layer and two homogeneous, isotropic and symmetrical elastic quarter planes pressed by means of a rigid circular punch has been presented. Mass forces and friction are neglected in the solution. Since the problem is examined for the plane state, the thickness along the z-axis direction is taken as a unit. In order to check the accuracy of the present models, the obtained results are compared with the available results of the open literature as well as the results of two software are compared using Root Mean Square Error (RMSE) and good agreements are found. Numerical analyses are performed considering different values of the external load, rigid circular radius, quarter planes span length and material properties. The contact lengths and contact stresses of these values are examined, and their results are presented. Consequently, it is concluded that the considered non-dimensional quantities have noteworthy influence on the contact lengths and contact stress distributions, additionally if FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack

  • Yaylaci, Murat;Yaylaci, Ecren Uzun;Ozdemir, Mehmet Emin;Ay, Sevil;Ozturk, Sevval
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.501-511
    • /
    • 2022
  • In this study, a two-dimensional model of the contact problem has been examined using the finite element method (FEM) based software ANSYS and based on the multilayer perceptron (MLP), an artificial neural network (ANN). For this purpose, a functionally graded (FG) half-infinite layer (HIL) with a crack pressed by means of two rigid blocks has been solved using FEM. Mass forces and friction are neglected in the solution. Since the problem is analyzed for the plane state, the thickness along the z-axis direction is taken as a unit. To check the accuracy of the contact problem model the results are compared with a study in the literature. In addition, ANSYS and MLP results are compared using Root Mean Square Error (RMSE) and coefficient of determination (R2), and good agreement is found. Numerical solutions are made by considering different values of external load, the width of blocks, crack depth, and material properties. The stresses on the contact surfaces between the blocks and the FG HIL are examined for these values, and the results are presented. Consequently, it is concluded that the considered non-dimensional quantities have a noteworthy influence on the contact stress distributions, and also, FEM and ANN can be efficient alternative methods to time-consuming analytical solutions if used correctly.

EVALUATION OF TIGHTNESS OF PROXIMAL TOOTH CONTACT IN PERMANENT DENTITION

  • Kim, Kyoung-Hwa;Jung, Jae-Hyun;Kim, Hee-Jung;Chung, Chae-Heon;Oh, Sang-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.6
    • /
    • pp.553-560
    • /
    • 2008
  • STATEMENT OF PROBLEM: Proximal contact plays an important role in the stability and maintenance of the integrity of the dental arches. However, it is difficult to evaluate quantitatively the tightness of proximal tooth contact (TPTC). PURPOSE: The aim of this study was to measure the TPTC in permanent dentition. MATERIAL AND METHODS: Ten young adult volunteers with healthy dentition participated in this experiment. The TPTC between the teeth of both the maxilla and the mandible was measured at rest state by a novel device which records the TPTC by pulling of a stainless steel strip (0.03 mm thick) using the electric motor. One-way ANOVA test was used to compare the values in all measured area. When a statistically significant difference was calculated, Bonferroni correction was applied. Independent samples t-test was used to compare the values in male and female. RESULTS: The lowest TPTC and the highest TPTC was measured between the lower central incisors (0.87 ${\pm}$ 0.20 N), and between the lower left first molar and second molar (1.99 ${\pm}$ 0.68 N), respectively. All TPTC per quadrant demonstrated a similar pattern of a continuous increased gradient in an anterior-posterior direction. There are no significant difference between the maxilla and mandible. CONCLUSION: The TPTC was measured quantitatively by a novel device and decreased progressively in a posterior-anterior direction.

STATE OF ART OF SELFBEARING MOTOR

  • Okada, Yohji;Ueno, Satoshi;Ohishi, Tetsuo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.20-25
    • /
    • 1997
  • Magnetic bearings have been widely used to support rotors without any physical contact. This however, requires the control of five degrees-of-freedom and needs a separate driving motor. This paper introduces selfbearing motors which use the combination of a rotary motor and a magnetic bearing. These motors are suitable for use in high speed rotor or in special circumstances because they are small in size and can replace the contact components. The radial type one has the merit of being small in size and capable of controlling two degrees-of-freedom in x and y directions. The axial type motor controls only one degree-of-freedom in z direction. Theoretical background of the functions, of the motor and magnetic bearing will also be introduced. New research works are reviewed and the application in rotary blood pump is discussed.

  • PDF

A Study on Endurance Estimation of 3D Sprag Type Ultra Precision Reverse-Locking Clutches under Contact Condition (접촉상태에 있는 의 초정밀 역전방지클러치의 3D SPRAG TYPE 내구성 평가에 관한 연구)

  • 이상범;서정세;이석순;이태선;최중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1429-1433
    • /
    • 2004
  • Recently, a dangerous event occurred at the field industry and mechanical system. At developed by SUNGGOK corp. a R-L clutches of a small and high capacity serves safety device from a variety environment of mechanical system, it permits transmission of driving torque form input to output shaft in both directions of rotation, but restrains any feedback torque of the driven load from rotating the output shaft in either direction. This study was carried out to demonstrate through finite element methode and durability estimation for safety of the R-L clutches without sliding during the engagement process. As results, we organized about endurance test methode when applied rated torque.

  • PDF

A Study on Endurance Estimation of ultra Precision Reverse-Locking Clutches under Contact Condition (접촉상태에 있는 초정밀 역전방지클러치의 내구성 평가에 관한 연구)

  • Suh Jeong Se;Lee Seok Soon;Lee Tae Sun;Choi Jung Hoan;Lee Sang Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.47-54
    • /
    • 2005
  • A dangerous event occurred at the field industry and mechanical system. At developed by SUNGGOKNANOTECH corp. a R-L clutches of a small and high capacity serves safety device from a variety environment of mechanical system, it permits transmission of driving torque from input to output shaft in both directions of rotation, but restrains any feedback torque of the driven load from rotating the output shaft in either direction. This study was carried out to demonstrate through finite element method and durability estimation for safety of the R-L clutches without sliding during the engagement process. As results, we organized about endurance test method when applied rated torque.