• 제목/요약/키워드: Contact effect

검색결과 3,260건 처리시간 0.032초

Numerical simulation of concrete slab-on-steel girder bridges with frictional contact

  • Lin, Jian Jun;Fafard, Mario;Beaulieu, Denis
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.257-276
    • /
    • 1996
  • In North America, a large number of concrete old slab-on-steel girder bridges, classified noncomposite, were built without any mechanic connections. The stablizing effect due to slab/girder interface contact and friction on the steel girders was totally neglected in practice. Experimental results indicate that this effect can lead to a significant underestimation of the load-carrying capacity of these bridges. In this paper, the two major components-concrete slab and steel girders, are treat as two deformable bodies in contact. A finite element procedure with considering the effect of friction and contact for the analysis of concrete slab-on-steel girder bridges is presented. The interface friction phenomenon and finite element formulation are described using an updated configuration under large deformations to account for the influence of any possible kinematic motions on the interface boundary conditions. The constitutive model for frictional contact are considered as slip work-dependent to account for the irreversible nature of friction forces and degradation of interface shear resistance. The proposed procedure is further validated by experimental bridge models.

다양한 형태의 실리콘 미세 구조물을 이용한 초소수성 표면형상 구현 (Surface Wettability in Terms of Prominence and Depression of Diverse Microstructures and Their Sizes)

  • 하선우;이상민;정임덕;정필구;고종수
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.679-685
    • /
    • 2007
  • Superhydrophobic surface, with a water contact angle greater than $150^{\circ}$, has a self-cleaning effect termed 'Lotus effect'. This surface is created by the combination of rough surface and the low surface energy. We proposed square pillar and square shapes to control surface roughness. Microstructure arrays are fabricated by DRIE(Deep Reactive Ion Etching) process and followed by PPFC(Plasma Polymerized Fluorocarbon) deposition. On the experimental result, contact angle at square pillar arrays is well matched with Cassie's model and largest contact angle is $173.37^{\circ}$. But contact angle of square pore shape arrays is lower than Cassie's theoretical contact angle about $5{\sim}10%$. Nevertheless, square pore arrays have more rigidity than square pillar arrays.

Transient analysis of lubrication with a squeeze film effect due to the loading rate at the interface of a motor operated valve assembly in nuclear power plants

  • Jaehyung Kim;Sang Hyuk Lee;Sang Kyo Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2905-2918
    • /
    • 2023
  • The valve assembly used in nuclear power plants is important safety-related equipment. In the new standard, the physical attributes are measured using a valve diagnosis test, which is used in the expansion to other non-tested valves using a quantitative test-basis methodology. With a motor-operated actuator, the state of stem's lubrication is related to physical attributes such as the stem factor and the friction coefficient. This study analyzed the numerical transient of fluid and solid lubrication with a squeeze film effect due to the loading rate on the stem and the stem nut using the experimental data. The differential equation that governs the motion mechanism of the stem and stem nut is established and analyzed. The flow rate, the fluid and the solid contact forces are calculated with the friction coefficient. Finally, we found that a change in the friction coefficient results from a change of the shear force in the solid contact mode during the interchange process between the solid contact mode and the fluid contact mode. The qualitative understanding of the squeeze film effect is expanded quantitatively for forces, thread surface distance, velocity, and acceleration, with consideration of the metal solid contact and fluid contact.

전기습윤 현상에서의 선장력과 전기 이중층의 영향에 대한 해석 (Analysis of Effects of Line Tension and Electrical Double Layers on Electrowetting Phenomenon)

  • 정상국;강관형;이정묵;강인석
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.956-962
    • /
    • 2003
  • The Lippmann-Young equation has been widely used in electrowetting to predict the contact-angle change of a droplet on a insulating substrate with respect to the externally-applied electrical voltage. The Lippmann-Young equation is derived by assuming a droplet as a perfect conductor, so that the effect of the electrical double layer and the line tension are not taken into account. The validity of the assumption has never been checked before, systematically. In the present investigation, a modified Lippmann-Young equation is derived taking into account of the effect of the electrical double layer and the line tension. To assess their influence on contact-angle change in electrowetting, the electrostatic field around the three-phase contact line is analyzed by solving the Poisson-Boltzmann equation numerically. The validity of the numerical methods is verified by using the past theoretical results on the electrostatic field around a wedge-shaped geometry, which shows fairly good agreement. The results of the present investigation clearly indicate that the effect of the electrical double layer and the line tension is negligible for a millimeter-sized droplet. On the other hand, for a micron-sized droplet, the effect of the line tension can become a dominating factor which controls the contact-angle change in electrowetting.

초기 잔류응력과 접촉표면 제거가 접촉피로수명에 미치는 영향 (Effect of Metal Removal and Initial Residual Stress on Contact Fatigue Life)

  • 허현무;구병춘;최재붕;김영진;서정원
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.341-349
    • /
    • 2005
  • Damage often occurs on the surface of railway wheel by wheel-rail contact fatigue. It should be removed before reaching wheel failure, because wheel failure can cause derailment with loss of life and property. The increase or decrease of the contact fatigue life by the metal removal of the contact surface were shown by many researchers, but it has not explained precisely why fatigue life increases or decreases. In this study, the effect of metal removal depth on the contact fatigue life for railway wheel has been evaluated by applying finite element analysis. It has been revealed that the residual stress and the plastic flow are the main factors determining the fatigue life. The railway wheel has the initial residual stress formed during the manufacturing process, and the residual stress is changed by thermal stress induced by braking. It has been found that the initial residual stress determines the amount of metal removal depth. Also, the effects of the initial residual stress and metal removal on the contact fatigue lift has been estimated, and an equation is proposed to decide the optimal metal removal depth for maximizing the contact fatigue life.

알루미늄 합금 A7075-T6의 프레팅 피로에서 접촉압력의 영향 (Contact Pressure Effect on Fretting Fatigue of Aluminum Alloy A7075-T6)

  • 조성산;황동현
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.531-537
    • /
    • 2012
  • Fretting fatigue tests were conducted to investigate the effect of contact pressure on fretting fatigue behavior in aluminum alloy A7075-T6. Test results showed that when the contact pressure is so low that gross or partial slip occurs at the pad/specimen interface, fretting fatigue damage increases with the contact pressure. However, when the contact pressure is high enough to prevent slip at the interface, fretting fatigue damage decreases with the contact pressure. In order to understand how the contact pressure influence the fretting fatigue damage, finite element analyses were conducted and the analysis results were used to evaluate critical plane fretting fatigue damage parameters and their components. It is revealed that fretting fatigue damage estimated with the parameters exhibits the same variation as that in the tests. Moreover, the variation of fretting fatigue damage is closely related with that of the maximum normal stress on the critical plane rather than the strain amplitude on the critical plane.

AgWC/AgCdO 접점의 소모특성에 미치는 개리속도의 영향 (The Effect of Opening Velocity on the Arc Erosion of AgWC/AgCdO Contacts)

  • 연영명;박흥태;이상엽;조상순;오일성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.517-520
    • /
    • 2003
  • The purpose of this paper is to investigate the effect of arc current and contact velocity on the erosion of silver contact to be used in low voltage circuit breakers. The arc current range from $2kA_{rms}$ to $20kA_{rms}$. A test system allows the control of the opening velocity profiles with contact velocities up to 10m/s and also enables the synchronization of the contact opening with a point on the arc current waveform. Contact erosion is evaluated by measuring the mass change of the cathode and anode. The results show that increase the opening velocity from 2m/s to 6m/s leads to an decrease in the contact erosion. The material transfer from one electrode to another is shown to depend on the transfer charge and the opening velocity of the contacts.

  • PDF

Color soft contact lens and corneal thickness

  • Kim, Douk-Hoon
    • 한국임상보건과학회지
    • /
    • 제7권1호
    • /
    • pp.1205-1214
    • /
    • 2019
  • Purpose: To investigate the effect of color soft contact lenses on the corneal thickness in young Korean population. Methods: The subjects consisted of 112 eyes (7 males, 49 females) with the mean age of $20.987{\pm}1.093years$ (range 20-25 years) in young Korean population during 2018. Test was compared the corneal thickness before and after wearing color soft contact lenses. The thinnest cornea thickness(TCT), central cornea thickness(CCT), pupil centre thickness(PCT), superior corneal thickness(SCT),inferior corneal thickness(ICT), medial corneal thickness(MCT), lateral corneal thickness(LCT) of the cornea was measured using the Pentacam pachymetry. The statistically analysis was perform the Shaparo-Wilk test. Results: The right eye was a statistically significant among the CCT,LCT, MCT and TCT values(p<0.001) in the compared the corneal thickness before and after wearing soft colour contact lenses. Also the left eye was a statistically significant among the LCT and MCT values(p<0.001) in the compared the corneal thickness before and after wearing soft colour contact lenses. However, there was no statistical difference (p>0.5) in the mean PCT between before and after wearing color soft contact lenses. Conclusion: These results suggested that the color soft contact lens wear can the effect the regional thickness of cornea. Therefore, the analysis of corneal topography with Pentacam can provide correct and useful diagnostic information of the morphology of the RGP contact lens fitting and diagnosis of corneal refraction surgery.

보 접착 모델을 이용한 게코 접착 시스템의 접착 메커니즘에 대한 연구 (A Study of Adhesive Mechanism of Gecko Adhesion System using Adhesive Beam Contact Model)

  • 김원배;조맹효
    • 한국전산구조공학회논문집
    • /
    • 제23권4호
    • /
    • pp.403-407
    • /
    • 2010
  • 게코 접착 시스템은 보(beam)의 형상을 가지는 seta와 접착패드 역할을 하는 spatula로 구성된다. 본 논문에서는 보 접착 모델(ahhesive beam contact model)을 사용하여 게코(gecko) 접착 시스템의 접착 메커니즘의 해석을 수행한다. 보 접착 모델은 접촉면에서 불균일한 응력 분포를 가지는 특징이 있으며, 접촉면에서의 최대 인장 응력(tensile stress)에 의하여 접착/분리 메커니즘이 결정된다. 접착패드 역할을 하는 spatula는 최대 인장응력을 감소시키는 역할을 하며, 이로 인해 접착력이 증가한다. 역방향 하중에 대해서는 spatula에 의하여 최대 압축 응력(compressive stress)이 감소하며, 이러한 현상에 의하여 접착력과 분리력의 비대칭성이 발생한다. 본 연구에서는 보 접착 모델의 해석을 위해 유한요소법(Finite Element Method)을 사용되며, spatula effect를 위한 해석 결과가 제시된다.

마이크로 크기를 가지는 빗살무늬 그루우브 패턴의 빗살각도변화에 대한 실험적 마찰특성 (Sliding Friction Property of Angle Effect for Crosshatch Micro-grooved Pattern under Lubricated)

  • 김석삼;채영훈
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.94-99
    • /
    • 2011
  • Micro-scale surface pattern has an benefit of tribological application under lubricated sliding contact. Therefore, a special pattern, that has to reduce the coulomb friction under contact, is considered to be necessary for improved efficiency of machines. The current study investigated the friction property of angle effect for micro-scale grooved crosshatch pattern on bearing steel surface using pin-on-disk type. The samples fabricated by photolithography process and then these are carry out the electrochemical etching process. We discuss the friction property due to the influence of hatched-angle on contact surface. We could be explained the lubrication mechanism for a Stribeck curve. It was found that the friction coefficient depend on an angle of the crosshatch on contact surface. It was thus verified that micro-scale crosshatch grooved pattern could affect the friction reduction.