• Title/Summary/Keyword: Contact configuration

Search Result 218, Processing Time 0.03 seconds

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • Lee, Eun-U;Park, Sun-Yong;Lee, Sang-Hwan;Kim, U-Nam;Jeong, U-Jin;Jeon, Chan-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF

A study of the system that enables real-time contact confirmation of probes in OLED panel inspection (OLED Panel 검사 시에 Probe의 실시간 Contact 확인 가능한 시스템에 관한 연구)

  • Hwang, Mi-Sub;Han, Bong-Seok;Han, Yu-Jin;Choi, Doo-Sun;Kim, Tae-Min;Park, Kyu-Bag;Lee, Jeong-woo;Kim, Ji-Hun
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.21-27
    • /
    • 2020
  • Recently, LCD (Liquid Crystal Display) has been replaced by OLDE (Organic Light Emitting Diode) in high resolution display industry. In the process of OLDE production, it inspects defective products by sending a signal using a probe during OLED panel inspection. At this time, the cause of the detection of failure is divided into two. One is the self-defect of the OLED panel and the other is the poor contact occurring in the process of contact between the two. The second case is unknown at the time of testing, which increases the time for retesting. To this end, we made a system that can identify in real time whether the probe is in contact during the inspection. A contact probe unit was designed for the system, and a stage system was implemented. An inspection system was constructed through S / W and circuit configuration for actual inspection. Finally, a system that can check contact and non-contact in real time was constructed.

A Study on the Formation and the Tribological Role of Mass Transfers Layers at Rubbing Silver-coated Surface (은 박막이 코팅된 표면에서 물질전이층의 형성 및 그 트라이볼로지적 역할에 관한 연구)

  • Yang, Seung-Ho;Kong, Ho-Sung;Yoon, Eui-Sung;Kim, Dae-Eun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.45-52
    • /
    • 2002
  • The tribological role of mass transfer layer was studied with silver coatings under various ranges of load and sliding speed. Silver coating was performed with a functionally gradient coating method. Tests were performed in dry sliding conditions, using a ball-on-disk contact configuration, at the load of 0.0196-17.64 N and the sliding speed of 20-1,000 mm/s in ambient air. Optical microscope and EPMA analyses showed that contact surfaces were covered with the mass transfer layers of agglomerated wear particles depending upon the contact conditions, and they greatly influenced the tribological characteristics of the surfaces. However, the formation of mass transfer layer was suppressed as the sliding speed increased, and above a critical sliding speed, no mass transfer layer was able to form. For building up a general framework of tribological behavior of the coated silver films, all test data were summarized on a map whose axes are contact pressure and sliding speed.

  • PDF

The Effects of Hangryunhaedocktang on Allergic Contact Dermatitis Based on the Morphological Changes in Epidemal Damage in Mice (황연해독탕(黃連解毒湯)이 알러지성 접촉피부염에 미치는 영향 -알러지성 접촉피부염 유발로 손상된 생쥐 상피세포의 완화를 중심으로)

  • Kang, Yoon-Ho;Kim, Jin-Taek;Kim, Sung-A
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.508-517
    • /
    • 2004
  • This study was performed to investigate the effectiveness of Hangryunhaedocktang (HHT) on epidermal damages induced by allergic contact dermatitis (ACD). The sensitization were caused by one application of $25{\mu}l$ of 5% 2,4-dinitroch1orobenzene (DNCB) onto a back-lumbar skin of BALB/c mice. 2 weeks later, ACD was elicitated with $4{\mu}l$ of 2.5% DNCB and then mice were given HHT extract in doses of 3.3ml/kg/day, for 72 hours. The ACD induced epidermal damages in HHT treated ACD mice was more mitigated than non-treated ACD elicited mice. The features related with epidermal damage such as epidermal hyperplasia, infiltration of inflammatory cells, increase of nuclear shrinkages and vacuolation, and enlargement of intercellular space softened. And the distribution of soybean agglutinin (SBA) positive reaction in stratum spinosum (SS) and stratum basale (SB) were similarly maintained in a normal configuration. The numerical decrease of BrdU, TUNEL, and Fas positive cells observed were prominent in SB. Results suggest a benefit role for HHT in mitigating epidermal damages in mice with allergic contact dermatitis.

  • PDF

A Study of Thermocapillary Migration of a Liquid Slug (열모세관 현상에 의한 액체 슬러그 이동에 관한 연구)

  • Kim, Ho-Young;Kim, Yi-Gu;Kang, Byung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1521-1527
    • /
    • 2004
  • Thermocapillary migration of a liquid slug is caused by temperature difference between the ends of a slug. The temperature difference induces the difference of the surface tension coefficient and consequently of capillary pressure between the ends of the slug. Presently available model to predict a velocity of thermocapillary migration adopts the Poiseuille equation which is valid only for a very long slug and neglects the shear stress near the contact line. In the present study, a new model has been developed to consider the shear stress near the contact line so that it can be applied to slugs or drops of general configuration. The experiments using mineral oil with the length to diameter ratio being 10 and a glass capillary were performed. It was found that the liquid slug began to move upon overcoming contact angle hysteresis when the temperature difference reached 35$^{\circ}C$. The results indicate that the new model well predicts the velocity of the liquid slug.

A Study on the Characteristics of the Tube-to-Support Dynamic Impact Force Measurement Facility (튜브와 지지대 사이의 동적상호 충격력 측정장치 특성규명에 관한 연구)

  • 김일곤;박진무
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.95-106
    • /
    • 1995
  • Flow-induced vibration in heat exchanger (or fuel rod) in nuclar power plant can cause dynamic interactions between tubes and tube supports resulting in fretting-wear. To increase the reliability and design life of heat exchanger components, design criteria that establish acceptable limits of vibration and minimize fretting wear are necessary. The fretting-wear rate is dependent upon material combination, contact configuration, environmental conditions and tube-to tube support dynamic interaction. It is demostrated that the fretting -wear rate correlates well with tube-to-support contact force or work rate. The tube-to-support dynamic interaction, which consists of dynamic contact forces and tube motion, is used to relate single-span wear data to real heat exchanger configurations consisting of multi-span tube bundles. This paper describes the test facility to measure tube-to-support dynamic impact force and reports its dynamic characteristics through the four impact tests - a force transduces independent and external impact tests, central ring inside impact test and additional cylinder impact test. Through the tests the impact parameter change dependent upon the material difference of impacting ball is studied, and the impact parameters of Force Transducer Assembly components are measured. And also the dynamic behavior of Force Transducer Assembly is analyzed. The force measurement technique herein is shown to provide a reasonable measure of dynamic contact forces.

  • PDF

Pantograph-catenary Dynamic Interaction for a Overhead Line Supported by Noise Barrier

  • Belloli, Marco;Collina, Andrea;Pizzigoni, Bruno
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.55-64
    • /
    • 2012
  • Subject of the paper is a particular configuration of overhead line, in which noise barrier structure is used as supports of the catenary instead of standard poles. This configuration is foreseen in case the noise barrier position is in conflict with the poles location. If the catenary is supported by the noise barrier, the motion that the latter undergo due to wave pressure associated to train transit is transmitted to the overhead line, so that potentially it influences the interaction between the catenary itself and the pantograph of the passing train. The paper focuses on the influence of such peculiar configuration on the quality of the current collection of high speed pantograph, for single and double current collection. The study has been carried out first with an experimental investigation on the pressure distribution on noise barrier, both in wind tunnel and with in-field tests. Subsequently a numerical analysis of the dynamics of the barrier subjected to the wave pressure due to train transit has been carried out, and the output of such analysis has been used as input data for the simulation of the pantograph-dynamic interaction at different speeds and with front or rear pantograph in operation. Consideration of structural modifications was then highlighted, in order to reduce the influence on the contact loss percentage.

An analysis on the robotic impact geometry with task velocity constraint (속도 제한에 의한 충격량 도형에 관한 연구)

  • Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.955-960
    • /
    • 1999
  • This paper describes the effect of impact configurations on a single robot manipulator. The effect of different configurations of kinematically redundant arms on impact forces at their end effectors during contact with the environment is investigated. Instead of the well-known impact ellipsoid, I propose an analytic method on the geometric configuration of the impact directly from the mathematical definition. By calculating the length along the specified motion direction and volume of the geometry, we can determine the characteristics of robot configurations in terms of both the impact along the specified direction and the ability of the robot withstanding the impact. Simulations of various impact configurations are discussed at the end of this paper.

  • PDF

Electrical Characterization of Electronic Materials Using FIB-assisted Nanomanipulators

  • Roh, Jae-Hong;You, Yil-Hwan;Ahn, Jae-Pyeong;Hwang, Jinha
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.223-227
    • /
    • 2012
  • Focused Ion Beam (FIB) systems have incorporated versatile nanomanipulators with inherent sophisticated machining capability to characterize the electrical properties of highly miniature components of electronic devices. Carbon fibers were chosen as a model system to test the applicability of nanomanipulators to microscale electronic materials, with special emphasis on the direct current current-voltage characterizations in terms of electrode configuration. The presence of contact resistance affects the electrical characterization. This resistance originates from either i) the so-called "spreading resistance" due to the geometrical constriction near the electrode - material interface or ii) resistive surface layers. An appropriate electrode strategy is proposed herein for the use of FIB-based manipulators.

Slope Detecting and Walking Algorithm of a Quadruped Robot Using Contact Forces (접촉 반력을 이용한 4 족 보행로봇의 경사면 감지 및 보행 알고리즘)

  • Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.138-147
    • /
    • 1999
  • For autonomous navigation, a legged robot should be able to walk over irregular terrain and adapt itself to variation of supporting surface. Walking through slope is one of the typical tasks for such case. Robot needs not only to change foot trajectory but also to adjust its configuration to the slope angle for maintaining stability against gravity. This paper suggests such adaptation algorithm for stable walking which uses feedback of reaction forces at feet. Adjusting algorithm of foot trajectory was studied with the estimated angel of slope without visual feedback. A concept of virtual slope angle was introduced to adjust body configuration against slope change of the supporting terrain. Regeneration of foot trajectory also used this concept for maintaining its stable walking against unexpected landing point.

  • PDF