• Title/Summary/Keyword: Contact configuration

Search Result 218, Processing Time 0.019 seconds

Analysis on the Electrical.optical Properties and fabrication of OLED with AZO Anode Electrode (AZO Anode 전극을 적용한 OLED 소자의 제작과 전기적.광학적 특성 분석)

  • Jin, Eun-Mi;Shin, Eun-Chul;Kim, Tae-Wan;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.357-362
    • /
    • 2007
  • AZO(Aluminum-doped Zinc Oxide) films are attractive materials as transparent conductive electrode because they are inexpensive, nontoxic and abundant element compared with ITO(Indium Tin Oxide). AZO films have been deposited on glass (corning 1737) substrates by RF magnetron sputtering. The AZO film was post-annealed at $600^{\circ}C$ for 2 hr with $N_2$ atmosphere. The AZO films were used as an anode contact to fabricate OLEDs(Organic Light Emitting Diodes). OLEDs with $AZO/TPD/Alq_3/Al$ configuration were fabricated by thermal evaporation. We investigated that the electric, structural and optical properties of AZO thin films, which measured using the methods of XRD, SEM, Hall measurement and Spectrophotometer. The current density-voltage and luminescence-voltage properties of devices were studied and compared with ITO devices fabricated under the same conditions.

Friction and Wear Behavior of Carbon/PEEK Composites according to Sliding Velocity

  • Yoon, Sung-Won;Kim, Yun-Hae;Lee, Jin-Woo;Kim, Han-Bin;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.3
    • /
    • pp.147-151
    • /
    • 2013
  • This study was to correctly estimate the friction and wear behavior of carbon fiber and PEEK sheet composites, and the validity of using them as alternatives to the metal-based materials used for artificial hip joints. Moreover, this work evaluated the friction coefficient according to the fiber ply orientation, along with the fractured surfaces of the carbon/PEEK composites. The unidirectional composites had higher friction coefficients than those multidirectional composites. This was caused by the debonding between the carbon fiber and the PEEK sheet, which was proportional to the contact area between the sliding surface and the carbon fiber. The friction test results showed that there was no significant differences in relation to the fiber ply orientation. However, in a case where the speed was 2.5 m/s, the friction coefficient was relatively large for configuration I. The friction surface of the specimen was analyzed using an electron microscope. In all cases, the debonding of the fiber and PEEK could be confirmed.

Prediction of seismic cracking capacity of glazing systems

  • O'Brien, William C. Jr.;Memari, Ali M.;Eeri, M.
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.101-132
    • /
    • 2015
  • This research formulates a closed-form equation to predict a glass panel cracking failure drift for several curtain wall and storefront systems. An evaluation of the ASCE 7-10 equation for Dclear, which is the drift corresponding to glass-to-frame contact, shows that the kinematic modeling assumed for formulation of the equation is sound. The equation proposed in this paper builds on the ASCE equation and offers a revision of that equation to predict drift corresponding to cracking failure by considering glazing characteristics such as glass type, glass panel configuration, and system type. The formulation of the proposed equation and corresponding analyses with the ASCE equation is based on compiled experimental data of twenty-two different glass systems configurations tested over the past decade. A final comparative analysis between the ASCE equation and the proposed equation shows that the latter can predict the drift corresponding to glass cracking failure more accurately.

Numerical analysis on the rapid fire suppression using a water mist nozzle in a fire compartment with a door opening

  • Lee, Jaiho
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.410-423
    • /
    • 2019
  • Fire suppression using a water mist nozzle directly above an n-Heptane pool in a fire compartment with a door opening was numerically investigated using the Fire Dynamics Simulator (FDS) for the purpose of application in nuclear power plants. Input parameters for the numerical simulation were determined by experimental measurements. Water mist was activated 10 s after the fire began. The sensitivity analysis was conducted for three input parameters: total number of cubic cells of 6032-2,926,400, droplets per second of 1000-500,000, and extinguishing coefficient of 0-100. In a new simple calibration method of this study, the extinguishing coefficient yielding the fire suppression time closest to that measured by experiments was found for use as the FDS simulation input value. When the water mist jet flow made contact with the developed fire, the heat release rate instantaneously increased, and then rapidly decreased. This phenomenon occurred with a displacement of the flame near the liquid fuel pool. Changing the configuration of the door opening with different aspect ratios and opening ratios had impact on the maximum value of the heat release rate due to the flame displacement.

Strength of connection fixed by TOBs considering out-of-plane tube wall deformation-Part 1: Tests and numerical studies

  • Wulan, Tuoya;Wang, Peijun;Xia, Chengxin;Liu, Xinyu;Liu, Mei;Liu, Fangzhou;Zhao, Ou;Zhang, Lulu
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • This paper presents a study on the behavior of a bolted T-stub to square tube connection using Thread-fixed One-side Bolts (TOBs) through tests and numerical simulations. It outlines a research work of four connections with focus on the failure modes and strengths of the connection under tensile load. It was observed that the thread anchor failure caused by shear failure of hole threads controlled the final failure of the connection in the tests. Meanwhile, the out-of-plane deformation of tube wall resulted in the contact separation between hole threads and bolt threads, which in turn reduced the shear strength of hole threads. Finite element models (FEMs) allowing for the configuration details of the TOBs fixed connection are then developed and compared with the test results. Subsequently, the failure mechanism of hole threads and stress distribution of each component are analyzed based on FEM results. It was concluded that the ultimate strength of connection was not only concerned with the shear strength of hole threads, but also was influenced by the plastic out-of-plane deformation of tube wall. These studies lay a foundation for the establishment of suitable design methods of this type of connection.

A Study on the Development of Unified Ball Valve and Polyethylene-Steel Pipe Via Virtual Manufacturing and Experimental Approach (가상생산 및 실험을 통한 폴리에틸렌관과 금속관 일체형 볼 밸브의 개발에 관한 연구)

  • Suh, Yeong-Sung;Yoo, Je-Hyuk;Ji, Min-Wuk;Song, Jeong-Hyun;Lee, Jae-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • In order to reduce the number of installation processes and the cost, a unified ball valve and polyethylene-steel pipe is proposed and tested. An integrated design approach is carried out such that a virtual manufacturing based on finite-element analysis is first performed in order to examine contact conditions under exaggerated temperature variations (${\Delta}T\;=\;60^{\circ}C$ and $-50^{\circ}C$ for summer and winter, respectively). From the final design configuration, it was predicted that the maximum contact pressures are 71 and 8.1 MPa for summer and winter, respectively, at relatively larger contact surface. Based on this observation, a prototype model is fabricated to go through an actual leakage test. The prototype pipe passed a hydrostatic strength test successfully, showing no leakage at even much higher (54 MPa) than the operational pressure (0.25 MPa).

THE LIGHT CURVE ANALYSIS OF AW CAM (AW CAM의 광도곡선 분석)

  • 김천휘;한원용
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.21-29
    • /
    • 1995
  • The $\beta$ Lyrae-type eclipsing binary AW Cam was observed photoelectrically in three wavelength regions. The obtained UBV light curves of AW Cam were analyzed with two separate modes(mode 2 for detached systems and mode 5 for semi-detached ones) of the Wilson-Devinney binary mode. It is intended to resolve the discrepancy in AW Cam system that the photometrio mass ratio (q=0.21) derived by Russo and Milano (1983) is not consistent with the spectroscopic result (q=0.43) by Mammano et al.(1967). Our photomtric solutions derived with mode 2 are fitted better to the observed light curves than those of mode 5, supporting that AW Cam may be not a normal semi-detached system but a detached one. Three dimensional Roche configuration of AW Cam system calculated with the derived mass ratio (q=0.43) reveals that the less massive secondary with the confined within its inner Roche lobe, while the more massive rimary is in marginally contact. From the Roche geometry, the constancy of the orbital period and other photometric evidences of AW Cam, it is provisionally concluded that the system is an unevolved detached binary in is provisionally concluded that the system is an unevolved detached binary in the phase of case A evolution toward 'contact phase' rather than and evolved one in 'broken-contact phase' suggested by Giuricin and Mardrossian (1981).

  • PDF

Development of a monolithic apparatus for degasing aluminum continuous casting molten metal (알루미늄 연속주조 용탕의 탈 가스 일체화 장치 개발)

  • 이용중;김태원;김기대;류재엽;이형우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.145-149
    • /
    • 2004
  • It is necessary for managing a perfect process for degasing aluminum molten metal according to the increase of a grade of aluminum and its alloy products. There are some methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals supplier and input method that supplies argon and nitrogen, or chlorine gas by using a gas blow-tube. However, these methods show some problems, and it shows that it is a difficult process to handle. pollution due to the producing a lot of toxic gases like chlorine and fluoride gas. irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are the most fatal are the producing a lot of sludge due to the reaction of aluminum molten metal with chemicals. loss of metals, and decreasing the life of refractory materials. In order to solve these problems. this paper develops a technology that is related to aluminum continuous casting molten metal and monolithic degasing apparatus. A degasing apparatus developed in this study improved the exist ing methods and prevented environmental pollution wi th smokeless. odor less, and harmlessness by using a new method that applies argon and nitrogen gas in which the methods used in the West and Japan are eliminated. The developed method can significantly reduce product faults that are caused by the production of gas and oxidation because it uses a preprocessed molten metal with chemicals. In addition. the amount of the produced sludge can also be reduced by 60-80% maximum compared with the existing methods. Then. it makes it possible to minimize the loss of metals. Moreover. the molten metal processing and settling time is also shortened by comparing it with the existing methods that are applied by using chemicals. In addition, it does much to improve the workers' health, safety and environment because there is no pollution. The improvement of productivity and prevent ion effects of disaster from the results of the development can be summarized as follows. It will contribute to the process rationalization because it does not have any unnecessary processes that the molten metal will be moved to an agitator by using a ladle and returned to process for degasing like the existing process due to the monolithic configuration. There are no floating impurities due to the oxidation caused by the contact with the air as same as the existing process. In addition. it can protect the blending of precipitation impurities. Because it has a monolithic configuration. it can avoid the use of additional energy to compensate the temperature decreasing about 60t that is caused by the moving of molten metal. It is not necessary to invest an extra facilities in order to discharge the gas generated from a degasing process by using an agitator. The working environment can be improved by the hospitable air in the factory because the molten metal is almost not exposed in the interior of the area.

  • PDF

Interfacial Control of Multi-functional CNT and ITO/PET Nanocomposites having Self-Sensing and Transparency (자체-감지능 및 광투과도를 지닌 CNT 및 ITO/PET 다기능성 나노복합소재의 계면 조절 연구)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Transparent and conductive carbon nanotube on polyethylene terephthalate (PET) were prepared by dip-coating method for self-sensing multi-functional nanocomposites. The changes in the electrical and optical properties of CNT coating mainly depended on the number of dip-coating, concentration of CNT solution. Consequently, the surface resistance and transmittance of CNT coating were sensitively controlled by the processing parameters. Surface resistance of CNT coating was measured using four-point method, and surface resistance of coated CNT could be better calculated by using the dual configuration method. Optical transmittance of PET film with CNT coating was evaluated using UV spectrum. Surface properties of coated CNT investigated by wettability test via static and dynamic contact angle measurement were consistent with each other. As dip-coating number increased, surface resistance of coated CNT decreased seriously, whereas the transmittance exhibited little lower due to the thicker CNT networks layer. Interfacial microfailure properties were investigated for CNT and indium tin oxide (ITO) coatings on PET substrates by electrical resistance measurement under cyclic loading fatigue test. CNT with high aspect ratio exhibited no change in surface resistance up to 2000 cyclic loading, whereas ITO with brittle nature showed a linear increase of surface resistance up to 1000 cyclic loading and then exhibited the level-off due to reduced electrical contact points based on occurrence of many micro-cracks.

Collision Analysis between FRP Fishing Boats According to Various Configurations (여러 가지 충돌 상황에 따른 FRP 어선 간의 충돌 해석)

  • Jang, In-Sik;Kim, Yong-Seop;Kim, Il-Dong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.253-262
    • /
    • 2006
  • In this paper, collision analysis is carried out between two FRP fishing boats. A computer simulation with finite element method is used to accomplish this objective. At first, a detailed geometric model of the boat is constructed using 3-D CAD program. The formation of a finite element from a geometric data of the boats is carried out using HYPERMESH that is the commercial software for mesh generation and post processing. Twelve collision configurations are established by combining two kinds of contact angle($90^{\circ},\;135^{\circ}$) and three different speed(5, 10, 15knot) for small and large boats. Collision analysis is accomplished using DYNA3D. Stress distribution and deformation shape are investigated for each collision condition. In general, $90^{\circ}$ collision angle generate larger stress than $135^{\circ}$ case and the collision for two moving boats showed larger maximum stress than the case that one is moving and the other is stationary. When analysis is carried out until 150ms contact parts of two boats are broken for 10 and 15knot collision speed, in which maximum stress is larger than ultimate strength of the material.

  • PDF