• Title/Summary/Keyword: Contact Radius

Search Result 254, Processing Time 0.027 seconds

The Correlation Analysis through the Contact Stress and the Curvature Radius according to Flexion Angle for the Design of Unicompartment Knee Replacement (반치환 슬관절의 설계 평가를 위한 굴곡각도에 따른 곡률반경과 접촉응력의 상관도 분석)

  • Lee, YongKyung;Yoo, OuiSik;Kim, JaeWon;Lim, Dohyung;Jung, TaeGon;Kim, JungSung
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.215-221
    • /
    • 2016
  • Conformity between the femoral component and tibial insert within the knee replacement may be measured in frontal or sagittal view, and shows differences in the curvature radius of the femoral component depending on the flexion angle, i.e., curvature radius has a complex effect on contact stress. Therefore, it is essential to confirm how the curvature radius effects contact stress, and provide an important variable to reduce contact stress. This study correlated contact stress with curvature radius measured in frontal and the sagittal views and confirmed the effect of curvature radius for assessment of the Newly Designed Unicompartment Knee Replacement (NDUKR). Finite element models were constructed for NDUKR and $Zimmer^{(R)}$ Unicompartment High Flex Knee Replacement system (ZUKR), incorporating the curvature radius as measured in either frontal or sagittal view. The femoral component had 1200N of compressive load applied approximately 1.65xbody weight. Contact stress was predicted at flexion angles $0^{\circ}C$, $30^{\circ}C$, $60^{\circ}C$, $90^{\circ}C$ and $120^{\circ}C$, for NDUKR: 42, 47.7, 47.7, 51.2, and 54.1 MPa, and ZUKR: 41.2, 49.5, 53.2, 54.3, and 57.4 MPa, respectively. Correlation analysis showed the influence of curvature radius measured from the sagittal view was larger than for frontal view.

Design of Structure Corners Restraining Tribological Failures: Part I - Development of Design Formula (트라이볼로지 손상을 억제하기 위한 구조물 모서리부 설계: 제1부 - 설계공식 개발)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.163-169
    • /
    • 2015
  • This paper describes a design method for the corner radius of a contacting body using the theoretical approach of contact mechanics. A complete contact, as in the case of a sharp-cornered punch, produces singular contact traction: whereas, in an incomplete contact, the singular contact traction disappears because of the rounded corners, and the contact edges are within the rounded regions. The design method aims to determine the conditions of the contact force as well as the material properties in an incomplete contact. The incomplete contact changes into the complete contact again when the contact edges exceed the rounded regions owing to either an increased contact force or the compliance of the materials. The contact length of a rounded punch is used as a parameter to derive the required conditions. As a result, a design formula is obtained, which provides a minimum allowable radius when the materials, normal contact force, and the length of a flat region of the punch are predetermined. This work consists of two parts: Part I includes a theoretical background, design method, and formula, and Part II describes the actual process with the investigation of design parameters.

A Study on the Characteristics of the Wheel/Roller Contact Geometry (차륜/궤조륜 기하학적 접촉특성에 관한 연구)

  • Hur, Hyun-Moo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.618-623
    • /
    • 2006
  • Understanding the contact between wheel and rail is a starting point in railway vehicle dynamic research area and especially analysis for the contact geometry between wheel and rail is important. On the one hand, the critical speed as the natural characteristics of rolling-stock is generally tested on the roller rig. The geometrical characteristics of the wheel/roller contact on the roller rig are different from these of the general wheel/rail contact because the longitudinal radius of roller is not infinite compared with rail. Thus, in this paper we developed the algorithm to analyze the wheel/roller contact geometry of our roller rig which is constructed now and analyzed the difference between whee/roller contact and wheel/rail contact. In conclusion, we found that the yaw motion of wheelset and the roller radius influence the geometrical contact parameters in wheel flange contact area.

Droplet Evaporation on Surf aces of Various Wettabilities (다양한 습윤성 표면 위에서의 액적 증발)

  • Song, Hyun-Soo;Lee, Yong-Ky;Jin, Song-Wan;Kim, Ho-Young;Yoo, Jung-Yul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.662-665
    • /
    • 2008
  • We experimentally investigate the evaporation characteristics of water droplet on surfaces of various wettabilities in the range of contact angle from 30$^{circ}$ to 150$^{circ}$. When a liquid droplet on a solid surface evaporates, the contact angle generally decreases with time and the evaporation rate varies with the droplet geometry such as the contact angle and the radius of curvature. Experimental data on the contact angle as a function of the droplet volume obtained by digital image analysis techniques cannot be explained by the existing theories. By measuring the temporal evolutions of the droplet radius and contact angle, we find the qualitative difference between the evaporation patterns on the hydrophilic surfaces where the contact radius remains constant initially and those on the superhydrophobic surfaces where the contact angle remains constant. Also, the evaporation rate is observed to depend on the surface material although the currently available models assume that the rate is solely determined by the droplet geometry. Despite the fact that the theory to explain this dependence on the surface remains to be pursued by the future work, we give the empirical relations that can be used to predict the droplet volume evolution for each surface. It is expected that the present study will contribute to interpreting the effect of droplet geometry on the evaporation.

  • PDF

A Study on Curvature Determination Approach of Disk Cams Using relative Accelerations of Followers (종동절의 상대가속도를 이용한 원반 캠의 곡률반경 결정법에 관한 연구)

  • Shin, Joong-Ho;Kang, Dong-Woo;Kim, Jong-Soo;Kim, Dae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.113-119
    • /
    • 2000
  • There are two major factors which affect the cam design : the pressure angle and the radius of curvature, Cam shape will have an instantaneous radius of curvature at every point. Even though the design constraint of the pressure angle has been satisfied the follower may still not complete the desired contact motion. If the radius of the follower roller is larger than the concave(negative) radius on the cam it occurs the gap between the cam and the follower roller at the contact point. And also if the curvature of the pitch curve of the cam is too sharp the cam profile may be undercut. This paper proposes a new approach which uses the relative velocity of the follower roller parallel to the tangent line at the contact point on the cam surface for determining the pressure angle and the relative acceeration for determining the radius of curvature.

  • PDF

Numerical Study of Thermal Deformations Due to Frictional Heatings in a Mechanical Face Seal (기계평면시일의 마찰열 변형거동에 관한 수치적 연구)

  • 김청균;함정윤
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.49-56
    • /
    • 1998
  • The thermal deformation of the contact seal components has been analyzed using the finite element method. The temperature distributions, the thermal deformations and contact stresses are solved numerically for the contact surface with wear coning effects. The thermal deformation is always shown to distort the sealing surface along the radius of the seal ring. The results show that the deformations of inner radius side are significant compared with those of outer radius. Thus, the thermal deformation due to thermal heatings may promote the coned face wear or wear related thermal cracks at the contacting face of the seal ring component.

Numerical Study of Thermal Deformations Due to Frictional Heatings in a Mechanical Face Seal (기계평면시일의 마찰열 변형거동에 관한 수치적 연구)

  • 함정윤;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.149-158
    • /
    • 1998
  • The thermal deformation of the contact seal components has been analyzed using the finite element method. The temperature distributions, the thermal deformations and contact stresses are solved numerically for the contact surface with wear coning effects. The thermal deformation is always shown to distort the sealing surface along the radius of the seal ring. The results show that the deformations of inner radius side are significant compared with those of outer radius. Thus, the thermal deformation due to thermal heatings may promote the coned face wear or wear related thermal cracks at the contacting face of the seal ring component.

  • PDF

Design of Structure Corners restraining Tribological Failures: Part II - Analysis of Design Parameters and Examples (트라이볼로지 손상을 억제하기 위한 구조물 모서리부 설계: 제2부 - 설계인자 분석 및 예)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.170-176
    • /
    • 2015
  • As a continuation of Part I, which developed a design formula of the minimum corner radius (Rmin) for restraining tribological failures, Part II investigates design parameters such as material properties and contact force. As design examples, Al 7075-T651, SST 304 and HT-9 are chosen for the materials and 1, 10 and 100 kN are used for the forces. The results show that the difference in Rmin decreases as either the elastic modulus increases or the contact force decreases. Given the same material and force, the permissible Rmin decreases as the flat region increases and vice versa. Because the Rmin values obtained from the examples are very small, the dimensions of the corner radius normally designed in engineering structures are regarded acceptable. The von Mises stress evaluated for a typical example, which is far below the yield strength, confirms this interpretation. Nevertheless, the present work can provide a design criterion as well as a guideline for quality control in the manufacturing of, in particular, contact corners, which has not been attempted before to the best of the author’s knowledge. In addition, this paper considers the problem of a step that may be formed in the contact contour by using a similar approach. The result shows that no size of the step is permissible.

The Correlation Between Corneal Eccentricity and Radius Curvature by Fitting Status of Soft Contact Lens Wearer (소프트 콘택트렌즈 착용자의 피팅 상태에 따른 각막 이심률과 곡률반경과의 상관관계)

  • Han, Sun-Hee;Kim, Bong-hwan;Park, Jun-Sung;Baek, Su-won;Kwon, Sung Jin;Kim, Eun Kyoung;Yoon, Jung Na;Choi, So Min;Heo, A Jeong;Park, Eun Hye
    • Journal of Korean Clinical Health Science
    • /
    • v.4 no.4
    • /
    • pp.662-670
    • /
    • 2016
  • Purpose. Because of a recent increase in use of soft contact lens at younger ages, in the present study, the correlation between corneal eccentricity and radius of curvature and fitting types of contact lens was investigated. Methods. The study evaluated the fitting status of targets through lens centration, push-up test, dynamic lag test and static lag test of lenses usually worn by 49 men and women (98eyes) in their 20s to 30s who put on soft contact lenses. After evaluation, the subjects were classified into 3 categories by fitting status(steep, aligment and flat). The radius of corneal curvature in the naked eyes was measured by using keratometer. Moreover the corneal eccentricity in the nasal side, temporal side, superior side and inferior side was measured by using the device capable of measuring the corneal eccentricity. Results. The radius of corneal curvature and corneal eccentricity of soft lenses worn by subjects were higher in the order of steep fitting and flat fitting, and the higher average corneal curvature radius and corneal eccentricity is intend to be more steep fitting(p=0.051, p=0.052). The corneal eccentricity showed a tendency to nasal fitting type at the higher eccentricity and temporal fitting type at the smaller eccentricity, statistically significant difference was observed(p<0.05). The study showed there were low correlation that nasal and temporal side at steep fitting, superior side at normal fitting and 4side(nasal, temporal, superior, inferior) at flat fitting, therefore when the corneal eccentricity changed the radius of corneal curvature also changed. The corneal eccentricity and the radius of corneal curvature showed statistically significant difference at 4side and each fitting types(p<0.05). Conclusions. The results of this study, the fitting status, of wearer are based on radius of corneal curvature and corneal eccentricity, and if lens fitting would be done considering that, it seems to be useful in a soft contact lens prescription.

Contact Stress Evaluations for the Ball Groove of Weiss Type Constant velocity joint (Weiss형 등속조인트 볼 홈의 접촉응력평가)

  • 김완두;이순복
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.60-67
    • /
    • 1989
  • For the life prediction and fatigue failure prevention of the constant velocity joint, the maximum equivalent stress and its location in depth from the contact area are essential. These values give the fundamental information to determine the depth of the surface hardening treatment at the contact area. Contact stresses are evaluated at the surface and subsurface of the ball groove of the Weiss type constant velocity joint. The maximum contact pressure and the maximum equivalent stress are obtained. The effects of various parameters such as the radius of ball groove, friction coefficient, and residual stress are studied. The maximum equivalent stress and the maximum contact pressure increase as the radius of the ball grove increases. The location of the maximum equivalent stress moves toward surface as the friction coefficient increases. It was also found that the maximum equivalent stress becomes minimum when the compressire residual stress is about 0.16 times of the maximum contact pressure.