• Title/Summary/Keyword: Contact Pressure Sensor

Search Result 94, Processing Time 0.038 seconds

A Cantilever Type Contact Force Sensor Array for Blood Pressure Measurement (혈압 측정을 위한 외팔보형 접촉힘 센서 어레이)

  • Lee, Byeung-Leul;Jung, Jin-Woo;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • Piezoresistive type contact force sensor array is fabricated by (111) Silicon bulk micromachining for continuous blood pressure monitoring. Length and width of the unit sensor structure is $200{\mu}m$ and $190{\mu}m$, respectively. The gap between sensing elements is only $10{\mu}m$. To achieve wafer level packaging, the sensor structure is capped by PDMS soft cap using wafer molding and bonding process with $10{\mu}m$ alignment precision. The resistance change over contact force was measured to verify the feasibility of the proposed sensor scheme. The maximum measurement range and resolution is 900 mm Hg and 0.57 mm Hg, respectively.

Study on the Pressure Measurement at Parting Surface to Prevent Flashing in Injection Molds (사출금형 버 발생 방지를 위한 형합면압 측정에 관한 연구)

  • Choi, J.H.;Choi, S.H.;Tae, J.S.;Park, H.P.;Rhee, B.O.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.73-78
    • /
    • 2011
  • The flashing reduces the part quality and the productivity of the molding process. We developed a contact pressure sensor to detect the flashing immediately. The performance of the sensor was analyzed in a simple 2D simulation. The sensor was applied to an automotive bumper mold with cavity pressure sensors. It showed sensitive output signal for the mold response by the cavity pressure change. It was confirmed that the flashing at the gate area occurred in the filling stage by the pressure increase due to growth of the melt flow length. The sensor output was correlated with the cavity pressure sensor output.

The Electric Control Method on the Packaging Technology for Non-Conductive Materials Using the Surface Processing Cavity Pressure Sensor (표면 가공형 캐비티 압력센서를 이용하여 비전도성 물질용 패키지 기술에 전기적 제어방식 연구)

  • Lee, Sun-Jong;Woo, Jong-Chang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.350-354
    • /
    • 2020
  • In this study, a pressure sensor for each displacement was fabricated based on the silicon-based pressure sensor obtained through simulation results. Wires were bonded to the pressure sensor, and a piezoresistive pressure sensor was inserted into the printed circuit board (PCB) base by directly connecting a micro-electro-mechanical system (MEMS) sensor and a readout integrated circuit (ROIC) for signal processing. In addition, to prevent exposure, a non-conductive liquid silicone was injected into the sensor and the entire ROIC using a pipette. The packaging proceeded to block from the outside. Performing such packaging, comparing simple contact with strong contact, and confirming that the measured pulse wavelength appears accurately.

Analysis of Receiving sensitivity according to Contact Surface Change of Transmit-Receiver Ultrasonic Sensor for Fuel Level Measurement in CNG Tank (CNG 탱크 내 연료량 계측을 위한 송·수신 초음파 센서의 접촉면 변경에 따른 수신 감도 분석)

  • Kim, Nam-Wook;Im, Seok-Yeon;Choi, Doo-Seuk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.137-142
    • /
    • 2018
  • This paper is studied, as basic research for measuring the accurate fuel amount of the CNG tank by using the transmit-receive ultrasonic sensor, the receiving sensitivity according to changed the pressure inside the tank and the contact surface of the ultrasonic sensor is analyzed. Measurement was carried out while changing the contact surface of the tank and the sensor to three shapes of Point, Line, and Surface and charging the pressure in the tank at an interval of 1 bar from 0 bar to 5 bar. Experiment results, as the pressure in the tank increased the tendency of the received signal value of the ultrasonic sensor to decrease was confirmed. As the contact area between the tank and the sensor increased, the value of the received signal increased, but the noise also increased. The results of experiment, it is judged that accuracy can be improved by changing the contact surface of the sensor.

Development and Application of System for Pressure Distribution Measurement (압력분포 측정용 시스템 개발 및 응용)

  • 김용환;박성하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.134-140
    • /
    • 2003
  • The film sensor is used for measuring pressure distribution at planar area, especially at a small space or gap. The present paper deals with the development of film type sensors and system for pressure distribution measuring. The developed system is consist of (1)film sensor with 40/sup */40 array, (2)PCI interface card with maximum sampling rate of 100㎐, and (3)software for data processing and real-time display. The contact pressure test of wiper blade and front glass of vehicle was performed with wiper blade by 40cm. Generally spring force of wiper arm is designed at 0.7∼1kN. Test results of total force was 9.4N and 7.1N in each driver and passenger toward. The paper suggested possibility for base definition in wiper design. A windshield wiper blade experiment revealed that the system successfully measured the contact force distribution during static state, showing the usefulness of the developed system.

Triboelectrification based Multifunctional Tactile Sensors

  • Park, Hyosik;Kim, Jeongeun;Lee, Ju-Hyuck
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.139-144
    • /
    • 2022
  • Advanced tactile sensors are receiving significant attention in various industries such as extended reality, electronic skin, organic user interfaces, and robotics. The capabilities of advanced tactile sensors require a variety of functions, including position sensing, pressure sensing, and material recognition. Moreover, they should comsume less power and be bio-friendly with human contact. Recently, a tactile sensor based on the triboelectrification effect was developed. Triboelectric tactile sensors have the advantages of wide material availability, simple structure, and low manufacturing cost. Because they generate electricity by contact, they have low power consumption compared to conventional tactile sensors such as capacitive and piezoresistive. Furthermore, they have the ability to recognize the contact material as well as execute position and pressure sensing functions using the triboelectrification effect. The aim of this study is to introduce the progress of research on triboelectrification-based tactile sensors with various functions such as position sensing, pressure sensing and contact material recognition.

Analysis of the Contact Pressure Distribution and Kinetics of Knee Implant Using the Simulator (Simulator를 이용한 인공무릎관절 접촉면의 압력분포 및 운동성 분석)

  • 이문규;김종민;김동민;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.363-367
    • /
    • 2003
  • Contact area and pressure are important factors which directly influence a life of knee implants. Since implant's mechanical functions should be experimentally evaluated for clinical use, many studies using a knee simulator and a pressure sensor system have been conducted. However it has not been reported that the contact pressure's distribution of a knee implant motion was estimated in real-time during a gate cycle. Therefore. the objective of this study was to analyze the contact pressure distribution for the motion of a joint using the knee simulator and I-scan sensor system. For this purpose, we developed a force-controlled dynamic knee simulator to evaluate the mechanical performance of artificial knee joint. This simulator includes a function of a soft tissue and has a 4-degree-of-freedom to represent an axial compressive load and a flexion angle. As axial compressive force and a flexion angle of the femoral component can be controlled by PC program. The pressure is also measured from I-scan system and simulator to visualize the pressure distribution on the joint contact surfaces under loading condition during walking cycle. The compressive loading curve was the major cause for the contact pressure distribution and its center move in a cycle as to a flexion angie. In conclusion, this system can be used to evaluate to the geometric interaction of femoral and tibial design due to a measured mechanical function such as a contact pressure, contact area and a motion of a loading center.

Distributed Flexible Tactile Sensor (분포형 유연촉각센서)

  • 유기호;윤명종
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.60-65
    • /
    • 2004
  • A flexible tactile sensor away with 8 H 8 tactile elements is designed and fabricated. The material of the sensor is PVDF(polyvinylidene fluoride) film and flexible circuitry is used in the fabrication fur the flexibility of the sensor The experimental results on static and dynamic properties of the sensor are obtained and examined. The signals of a contact pressure to the sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. The processed signals of the sensor outputs are visualized in a personal computer for illustrating the shape and force distribution of a contact object. The reasonable performance for the detection of contact state is verified through sensing examples.

A Study of Characteristics of Foot Pressure Distribution in Trans-tibial Amputee Subjects (하퇴 의지 사용자의 족저압 분포 특성에 관한 연구)

  • Kim, Jang-Hwan;Cynn, Heon-Seock
    • Physical Therapy Korea
    • /
    • v.8 no.3
    • /
    • pp.1-10
    • /
    • 2001
  • The purpose of this study was to compare the static pressure, dynamic pressure, dynamic pressure-time integral, relative impulse, and contact time between the sound lower limb and amputated lower limb in trans-tibial amputee subjects using Parotec system. Seventeen trans-tibial amputee subjects wearing endoskeletal trans-tibial prosthesis voluntarily participated in this study. The results were as follows: 1) In static standing condition, there were significantly higher static pressure in sound lower limb insole sensor of 10, 14, 15, 18, 19, 23, and 24 and in amputated lower limb insole sensor of 9, 12, and 16 (p<.05). 2) In dynamic gait condition, there were significantly higher dynamic pressure in sound lower limb insole sensor of 2, 18, 22, 23, and 24 and in amputated lower limb insole sensor of 5, 9, 10, 11, 12, 14, 15, and 16 (p<.05). 3) In dynamic gait condition, there were significantly higher pressure-time integral in sound lower limb insole sensor of 2, 4, 18, 19, 20, 21, 23, and 24 and in amputated lower limb insole sensor of 5, 11, 12, and 15 (p<.05). 4) In dynamic gait condition, there were significantly higher relative impulse in sound lower limb insole sensor of 18, 19, 20, 22, 23, and 24 and in amputated lower limb insole sensor of 5, 9, 10, 11, 12, and 15 (p<.05). 5) In dynamic gait condition, there was significantly higher percentage of contact time in push off phase of sound lower limb and in support phase of amputated lower limb (p<.05). These results suggest that trans-tibial amputee subjects had characteristics of shortened push off phase due to unutilized forefoot and of lengthened support phase with higher pressure in the midfoot.

  • PDF