• Title/Summary/Keyword: Contact Normal Stress

Search Result 104, Processing Time 0.153 seconds

Finite Element Analysis on the Deformation Behavior Stability of Contact Sealing Rings (접촉식 밀봉 링의 변형거동 안정성에 관한 유한요소해석)

  • Kim, Chung Kyun;Kim, Do Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.47-51
    • /
    • 2012
  • In this study, the deformation behavior stability of sealing rings with three different cross sectional areas has been presented using a FEM technique. To investigate the deformation behavior stability, the initial compression rate of 25% has been applied to the sealing ring, which is molded with a nitrile butadiene rubber. The maximum strain, maximum stress, and maximum contact normal stress have been analyzed for the working fluid pressure of $25kgf/cm^2$. The FEM results show that the maximum strain of a hollow o-ring and a hollow rectangular ring with a hollow space in the center of a sealing ring is higher than that of a conventional o-ring, but the maximum stress and the maximum contact normal stress are low. In these results, the sealing rings with a hollow space in the center of the cross sectional area is recommended to increase an extended endurance stability of sealing rings. But, the solid sealing ring is designed to guarantee the sealing safety of a contact sealing ring.

Optimized Sealing Profile Design of Mechanical Face Seals for a Hydro-power Turbine (소수력 터빈용 기계평면시일의 최적형상설계에 관한 연구)

  • Kim, Chung-Kyun;Kim, Jung-Il;Sihn, Ihn-Cheol;Lim, Kwang-Hyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.499-502
    • /
    • 2006
  • This paper presents computed results of FEM analysis on the tribological contact behaviors of a primary sealing components of mechanical face seals for a small hydro-power turbine. The FEM computed results present that the contact area between seal rings and seal seats is very important for a good tribological performance such as low friction heating, low wear, high contact normal stress in a primary seal ing components. Based on the FEM computation, model III in which has a small sealing contact area shows low dilatation of primary sealing components, and high contact stress between a seal ring and a 1)seal seat.

  • PDF

Determination of stress state in chip formation zone by central slip-line field

  • Andrey Toropov;Ko, Sung-Lim
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.577-580
    • /
    • 2003
  • Stress state of chip formation zone is one of the main problems in metal cutting mechanics. In two-dimensional case this process is usually considered as consistent shears of work material along single of several shear surfaces. separating chip from workpiece. These shear planes are assumed to be trajectories of maximum shear stress forming corresponding slip-line field. This paper suggests new approach to the constriction of slip-line field, which Implies uniform compression in chip formation zone. On the base of given model it has been found that imaginary shear line in orthogonal cutting is close to the trajectory of maximum normal stress and the problem about its determination have been considered. It has been shown that there is a second central slip-line field inside chip, which corresponds well to experimental data about stress distribution on tool rake face and tool-chip contact length. The suggested model could be useful in solution of various problems of machining.

  • PDF

Wear and Fatigue Properties of Surface-Hardened Rail Material (표면 강화처리 레일의 마모 및 피로 특성)

  • Chang, Seky;Pyun, Young-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.380-385
    • /
    • 2016
  • Railway tracks are repeatedly overstressed and damaged owing to increase in passing tonnage and numerous contact cycles between wheels of train and rails. In order to ensure safe train operation, heat-treated rails are used in addition to regular inspection and maintenance of these rails. Normal rails were treated using ultrasonic nanocrystal surface modification (UNSM) to strengthen the surface of rails. A few changes in surface properties were detected with respect to hardness and compressive residual stress after UNSM treatment. Wear and rolling contact fatigue tests were performed using rails whose surfaces were hardened by UNSM and heat-treated rails. The amount of wear and fatigue life cycles were measured to estimate the effect of UNSM on the rail material. The material of the surfacehardened rail showed improved wear and rolling contact fatigue properties.

Lubrication Characteristics of Condensed Water Molecules at Solid Surface through Molecular Simulation (고체표면에 응축된 물 분자의 윤활특성에 대한 분자시뮬레이션 연구)

  • Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.195-202
    • /
    • 2021
  • This paper presents a numerical analysis of the lubrication characteristics of condensed water molecules on a solid surface by conducting molecular dynamics simulations. We examine two models consisting of a simple hexahedral substrate with and without water molecules to reveal the lubrication mechanism of mono-layered water molecules. We perform a sliding simulation by contacting and translating a single asperity on the substrate under various normal loads. During the simulation, we measure the friction coefficient and atomic stress. When water molecules were interleaved between solid surfaces, atomic stress exerted on individual atom and friction coefficient were smaller than those of model without water molecule. Particularly, at a low load, the efficacy of water molecules in the reduction of atomic stress and friction is remarkable. Conversely, at high loads, water molecules rarely lubricate solid surfaces and fail to effectively distribute the contact stress. We found a critical condition in which the lubrication regime changes and beyond the condition, significant plastic deformation was created. Consequently, we deduce that water molecules can distribute and reduce contact stress within a certain condition. The reduced contact stress prevents plastic deformation of the substrate and thus diminishes the mechanical interlocking between the asperity and the substrate.

Wear characteristics depended on Wear Index in Wheel-Rail Interface (차륜 답면과 레일의 경계영역에서의 마모 특성)

  • Ahn, Jong-Gon;Kwon, Seok-Jin;Son, Young-Jin;Kim, Ho-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.560-567
    • /
    • 2011
  • Wheel and rail wear is a fundamental and complicate problem in railway field. The life of railway is usually limited by wear. The wheel surface is subjected to high normal and tangential contact stress. The removal of material from the surface by wear is function of the sliding and contact stress. In the present paper, the wear characteristic depended on slip rate, contact pressure and temperature are investigated and is used to twin disc tester. The result shows that the wear in wheel-rail interface is remarkably depended on slip rate and contact pressure.

  • PDF

Wear Characteristics Depended on Wear Index in Wheel-Rail Interface (차륜 답면과 레일의 경계영역에서의 마모 특성)

  • Kim, Moon-Ki;Ahn, Jong-Gon;Kim, Sung-Kwon;Kwon, Seok-Jin;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1000-1007
    • /
    • 2011
  • Wheel and rail wear is a fundamental and complicate problem in railway field. The life of railway is usually limited by wear. The wheel surface is subjected to high normal and tangential contact stress. The removal of material from the surface by wear is function of the sliding and contact stress. In the present paper, the wear characteristic depended on slip rate, contact pressure and temperature are investigated and is used to twin disc tester. The result shows that the wear in wheel-rail interface is remarkably depended on slip rate and contact pressure.

  • PDF

Study on the Design Methodology of Constant Velocity Joints for Passenger Cars using DOE (실험계획법을 활용한 승용차용 등속조인트 설계기법 연구)

  • Jeong, Chang-Hyun;Jung, Do-Hyun;Bae, Won-Rak
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.121-133
    • /
    • 2008
  • We presented design methodology of constant velocity joint for passenger cars using design of experiment. On the basis of contact normal stress of internal components of constant velocity joints, we performed a sensitivity analysis of several design parameters. And then we performed robust design and optimization design process. As a result, we could find robust design and also propose the optimized design. Presented design process would be very helpful for engineers who are suffer for new constant velocity joint design.

Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components (부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석)

  • Hwang, Won-Gul;Sung, Won-Suk;Ahn, Ki-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.