• 제목/요약/키워드: Contact Morphology

검색결과 324건 처리시간 0.034초

분쇄공정에서 변화된 입자크기 및 형상특성의 평가방법에 관한 새로운 제언 (New Evaluation Method for The Particle Size and Morphology Via Change of Ground Particle During a Grinding Process)

  • 최희규;이재현;최준우
    • 한국입자에어로졸학회지
    • /
    • 제9권1호
    • /
    • pp.1-6
    • /
    • 2013
  • New evaluation method for the particle size and morphology via change of ground particle during a grinding process was investigated. The grinding experiments were carried by a planetary ball mill. The relationship between the particle outline of the scanning electron microscopy photograph and measurement line, the measurement contact number was evaluated. The value of contact number decreased with the increase in the particle size of the ground sample, and varied with the experimental conditions. The value of contact number, which is related to the particle size of the raw sample, changed at the various experimental conditions.

Effect of Improved Surface Wetability and Adhesion of Undulated Diamond-like Carbon Structure with r.f. PE-CVD

  • Jang, Young-Jun;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • 제9권1_2호
    • /
    • pp.22-25
    • /
    • 2008
  • This paper investigated the wetting and adhesion property of undulated DLC film with surface morphology controlled for a reduced real area of contact. The undulated DLC Films were prepared by 13.56 MHZ radio frequency plasma enhanced chemical vapor deposition (r.f. PECVD) by using nanoscale Cu dots surface on a Si (100) substrate. FE-SEM, AFM analysis showed that the after repeated deposition and plasma induced damage with Ar ions, the surface was nanoscale undulated. This phenomenon changed the surface morphology of DLC surface. Raman spectra of film with changed morphology revealed that the plasma induced damage with Ar ions significantly suppressed the graphitization of DLC structure. Also, it was observed that while the untreated flat DLC surfaces had wetting angle starting ranged from $72^{\circ}$ and adhesion force of 333ni. Had wetting angle the undulated DLC surfaces, which resemble the surface morphology of a cylindrical shape, increased up to $104^{\circ}$ and adhesion force decreased down to 11 nN. The measurements agree with Hertz and JKR models. The surface undulation was affected mainly by several factors: the surface morphology affinity to cylindrical shape, reduction of the real area of contact and air pockets trapped in cylindrical asperities of the surface.

자기세정산업용 소재 개발을 위한 O2 플라즈마 처리가 Poly(imide) 필름의 표면 형태 및 특성에 미치는 영향 (Effect of O2 Plasma Treatment on the Surface Morphology and Characteristics of Poly (imide) to Develop Self-cleaning Industrial Materials)

  • 강인숙
    • 한국의류학회지
    • /
    • 제36권10호
    • /
    • pp.1117-1124
    • /
    • 2012
  • This study was a preliminary study to investigate the influence of surface morphology and characteristics on the self-cleaning of substrates. PI film was treated by $O_2$ plasma to modify the surface; in addition, AFM and Fe-SEM were employed to examine the morphological changes induced on a PI film treated by $O_2$ plasma and surface energies calculated from measured contact angles between several solutions and PI film based on the geometric mean and a Lewis acid base method. The surface roughness of PI film treated by $O_2$ plasma increased with the duration of the $O_2$ plasma on PI film due to the increased surface etching. The contact angle of film treated by $O_2$ plasma decreased with the increased treatment time in water and surfactant solution; in addition, the surface energy increased with the increased treatment times largely attributed to the increased portion on the polar surface energy of PI film. The coefficient of the correlation between surface roughness and surface polarity such as contact angle and surface energy was below 0.35; however, it was over 0.99 for the contact angle and surface energy.

3차원 거친 접촉하에서의 피로균열 시작수명에 관한 연구 (Study on the Fatigue Crack Initiation Life uncle]r 3-Dimensional Rough Contact)

  • 김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.160-166
    • /
    • 2002
  • In case of rough contact fatigue, the accurate calculation of surface tractions is essential to the prediction of crack initiation life. Accurate Surface tractions influencing shear stress amplitude can be obtained by contact analysis based on the morphology of contact surfaces. In this study, to simulate rough contact under sliding condition, gaussian rough surface generated numerically in the previous study was used and to calculate clack initiation life in the substrate, dislocation pileup theory was used.

3차원 거친 접촉하에서의 피로균열 시작수명에 관한 연구 (Study on the Fatigue Crack Initiation Life under 3-Dimensional Rough Contact)

  • 이문주;구영필;조용주
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.72-79
    • /
    • 2000
  • In case of rough contact fatigue, the accurate calculation of surface tractions is essential to the prediction of crack initiation life. Accurate Surface tractions influencing shear stress amplitude can be obtained by contact analysis based on tile morphology of contact surfaces. In this study, to simulate rough contact under sliding condition, gaussian rough surface generated numerically in the previous study was used and to calculate crack initiation life in the substrate, dislocation pileup theory was used.

  • PDF

Reduction of Contact Resistance Between Ni-InGaAs Alloy and In0.53Ga0.47As Using Te Interlayer

  • Li, Meng;Shin, Geon-Ho;Lee, Hi-Deok;Jun, Dong-Hwan;Oh, Jungwoo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권5호
    • /
    • pp.253-256
    • /
    • 2017
  • A thin Te interlayer was applied to a Ni/n-InGaAs contact to reduce the contact resistance between Ni-InGaAs and n-InGaAs. A 5-nm-thick Te layer was first deposited on a Si-doped n-type $In_{0.53}Ga_{0.47}As$ layer, followed by in situ deposition of a 30-nm-thick Ni film. After the formation of the Ni-InGaAs alloy by rapid thermal annealing at $300^{\circ}C$ for 30 s, the extracted specific contact resistivity (${\rho}_c$) reduced by more than one order of magnitude from $2.86{\times}10^{-4}{\Omega}{\cdot}cm^2$ to $8.98{\times}10^{-6}{\Omega}{\cdot}cm^2$ than that of the reference sample. A thinner Ni-InGaAs alloy layer with a better morphology was obtained by the introduction of the Te layer. The improved interface morphology and the graded Ni-InGaAs layer formed at the interface were believed to be responsible for ${\rho}_c$ reduction.

전면 전극 형성 시 표면 형상이 미치는 영향 분석 (Analyzing the Effect of Si Surface Morphology on Front Electrode Formation)

  • 한혜빈;최동진;강동균;박현정;배수현;강윤묵;이해석
    • Current Photovoltaic Research
    • /
    • 제7권4호
    • /
    • pp.130-133
    • /
    • 2019
  • The Ag crystallite formed during the formation of the front electrode forms a contact between the metal of the electrode and the emitter of the cell. Contact between the electrode and emitter plays an important role in collecting electrons generated by the solar cell. Therefore, Ag crystallite formation is an important factor. In order for solar cells to have good characteristics, it is important to understand the factors influencing the Ag crystallite formation. Factors affecting the formation of Ag crystallites include Si emitter, morphology, Si defect and firing temperature. The influence of surface morphology on Ag crystallite formation was confirmed throughout this study. In the case of fine texturing, the Ag crystallites were formed at the pointed parts. The finer the texturing, the sharper areas and more Ag crystallites were formed. This was confirmed by SEM image and FF calculation.

Poly(ethylene Terephthalate) 필름의 표면모폴로지와 표면특성 (The Surface Morphology and Characteristics of Poly (ethylene Terephthalate) Film)

  • 강인숙;문미화;나종주
    • 한국의류학회지
    • /
    • 제34권11호
    • /
    • pp.1880-1888
    • /
    • 2010
  • This study was a preliminary investigation of the influence of surface characteristics of substrates on the detergency of particulate soil. A PET film was surface modified with NaOH and DMF for different times. The surface morphology of the film was scanned by AFM and the surface energies were calculated from the measured contact angles between several solutions and film based on a geometric mean and the Lewis acid base method. The surface morphology of the PET film treated with NaOH and DMF became more etched and swelled with an increased treatment time, respectively. The surface roughness and surface area of film treated with NaOH enlarged with increased treatment time. However, the coefficient of friction of film treated with NaOH and coefficient of friction, surface roughness, and surface area of film treated with DMF increased and then decreased with increased treatment time. The contact angle of film treated with DMF decreased with increased treatment time in water and surfactant solution; however, the effect of treatment time on the contact angle was different in both solutions for film treated with NaOH. By the treatment of PET film with NaOH and DMF, the polar group of the surface energy increased and the nonpolar group decreased; however, the change of total surface energy was not significant.

Ni/Cu 전극을 적용한 고효율 실리콘 태양전지의 제작 및 특성 평가 (Ni/Cu Metallization for High Efficiency Silicon Solar Cells)

  • 이은주;이수홍
    • 한국전기전자재료학회논문지
    • /
    • 제17권12호
    • /
    • pp.1352-1355
    • /
    • 2004
  • We have applied front contact metallization of plated nickel and copper for high efficiency passivated emitter rear contact(PERC) solar cell. Ni is shown to be a suitable barrier to Cu diffusion as well as desirable contact metal to silicon. The plating technique is a preferred method for commercial solar cell fabrication because it is a room temperature process with high growth rates and good morphology. In this system, the electroless plated Ni is utilized as the contact to silicon and the plated Cu serves as the primary conductor layer instead of traditional solution that are based on Ti/Pd/Ag contact system. Experimental results are shown for over 20 % PERC cells with the Plated Ni/Cu contact system for good performance at low cost.

Temperature Dependent Behavior of Thermal and Electrical Contacts during Resistance Spot Welding

  • Kim, E.
    • International Journal of Korean Welding Society
    • /
    • 제2권1호
    • /
    • pp.1-10
    • /
    • 2002
  • The thermal contact conductance at different temperatures and with different electrode forces and zinc coating morphology was measured by monitoring the infrared emissions from the one dimensionally simulated contact heat transfer experiments. The contact heat transfer coefficients were presented as a function of the harmonic mean temperature of the two contacting surfaces. Using these contact heat transfer coefficients and experimentally measured temperature profiles, the electrical contact resistivities both for the faying interface and electrode-workpiece interface were deduced from the numerical analyses of the one dimension simulation welding. It was found that the average value of the contact heat transfer coefficients for the material with zinc coating (coating weight from 0 g/$mm^2$to 100 g/$mm^2$) ranges from 0.05 W/$mm^2$$^{\circ}C$ to 2.0 W/$mm^2$$^{\circ}C$ in the temperature range above 5$0^{\circ}C$ harmonic mean temperature of the two contacting surfaces. The electrical contact resistivity deduced from the one dimension simulation welding and numerical analyses showed that the ratio of electrical contact resistivity at the laying interface to the electrical contact resistivity at the electrode interface is smaller than one far both bare steel and zinc coated steel.

  • PDF