• Title/Summary/Keyword: Contact Element

Search Result 1,728, Processing Time 0.028 seconds

finite Element Modeling of a Hemispherical Asperity Adhesively Contacting the Plane Surface of Semi-Infinite Rigid Body (강체평면에 흉착접촉하는 반구헝돌기의 유한요소모델링)

  • Cho, Sung-San;Park, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2436-2441
    • /
    • 2002
  • Finite element technique considering adhesive forces is proposed and applied to analyze the behavior of elastic hemispherical asperity adhesively contacting the plane surface of semi -infinite rigid body. It is demonstrated that the finite element model simulates interfacial phenomena such as jump -to-contact and adhesion hysteresis that cannot be simulated with the currently available adhesive contact continuum models. This simulation aiso provides valuable information on contact pressure, contact region and stress distributions. This technique is anticipated to be utilized in designing a low-adhesion surface profile for MEMS/NEMS applications since various contact geometries can be analyzed with this technique.

Finite element generalized tooth contact analysis of double circular arc helical gears

  • Qu, Wentao;Peng, Xiongqi;Zhao, Ning;Guo, Hui
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.439-448
    • /
    • 2012
  • This paper investigates the load sharing of double circular arc helical gears considering the influence of assembly errors. Based on a load sharing formulae, a three-dimensional finite element tooth contact analysis (TCA) is implemented with commercial software package ANSYS. The finite element grid for the double circular arc gear contact model is automatically generated by using the APDL (ANSYS Parameter Design Language) embedded in ANSYS. The realistic rotation of gears is achieved by using a coupling degree-of-freedom method. Numerical simulations are carried out to exemplify the proposed approach. The distribution of contact stress and bending stress under specific loading conditions are computed and compared with those obtained from Hertz contact theory and empirical formulae to demonstrate the efficiency of the proposed load sharing calculation formulae and TCA approach.

Wheel-Rail Contact Analysis Considering Axle Deformation Using a One-Dimensional Beam Element (1차원 빔요소를 활용한 차축 변형고려 차륜-레일 접촉해석)

  • Choi, Ha-Young;Lee, Dong-Hyung;Kwon, Seok-Jin;Seo, Jeong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.139-145
    • /
    • 2017
  • It is necessary to analyze the exact contact position and contact stress of the wheel-rail in order to predict damage to the wheel and rail. This study presents a wheel-rail contact analysis model that considers the deformation of the axle. When a wheel-rail contact analysis is performed using a full three-dimensional model of the wheelset and rail, the analytical model becomes very inefficient due to the increase in analysis time and cost. Therefore, modeling the element-coupling model of the wheel and rail as a three-dimensional element and the axle as a one-dimensional element is proposed. The wheel-rail contact characteristics in the proposed analysis model for straight and curved lines were analyzed and compared with the conventional three-dimensional analysis model. Considering the accuracy of the analysis results and time, the result shows that the proposed analytical model has almost the same accuracy as a full three-dimensional model, but the computational effort is significantly reduced.

Finite Element Analysis of Pivot Stiffness for Tilting Pad Bearings and Comparison to Hertzian Contact Model Calculations (유한 요소 해석을 통해 계산된 틸팅 패드 베어링의 피봇 강성과 Hertzian 접촉 모델 해석 결과 비교)

  • Lee, Tae Won;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.205-211
    • /
    • 2014
  • Recent studies emphasize the importance of pivot stiffness in the analysis of tilting pad bearings (TPBs). The present paper develops a finite element model of the pad pivot and compares the predicted pivot stiffness to the results of Hertzian contact model calculations. Specifically, a finite element analysis generates tetrahedral mesh models with ~40,000 nodes for a ball-socket pivot and ~50,000 nodes for a rocker-back pivot. These models assume a frictionless boundary condition in the contact area. Increasing the applied loads on the pad in conjunction with increasing time steps ensures rapid convergence during the nonlinear numerical analysis. Predictions are performed using the developed finite element model for increasing the differential diameters between the pad pivot (or ball) and the bearing housing (or socket). The predictions show that the pivot contact area increases with decreasing differential diameters and increasing applied loads. Further, the maximum deformation occurring at the pivot center increases with increasing differential diameters and increasing applied loads. The pivot stiffness increases nonlinearly with decreasing differential diameters and increasing applied loads. Comparisons of results of the developed finite element model to those of Hertzian contact model calculations assuming a small contact area show that the latter model underestimates the pivot stiffnesses predicted by the finite element models of the ball-socket and rocker-back pivots, particularly for small differential diameters. This result implies the need for cautionduring the design of pivot stiffness by the Hertzian contact model.

Finite Element Analysis of the Contact Stress Characteristics in Scraper Seals (스크레이퍼 실의 접촉응력 특성에 관한 유한요소해석)

  • Kim, Chung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.895-902
    • /
    • 1999
  • This paper deals with a numerical study of the tribological contact stress distributions of elastomeric lip seals for oscillating shafts when the sealing interference and band width between the lip ease or contact seals and the shaft are present. Using the finite element method the contact stress and band width of scraper seals are analyzed for the sealing interference including some nonlinearities such as geometrical nonlinearity, material nonlinearity and nonlinear contact boundary condition. The FEM results showed that the contact stress concentrated on the contacting lip zone between the contacting edge of lip and the shaft for the increased interference. In double lip scraper seals, ole maximum contact stress of the dust lip, which is used to exclude foreign contaminants is six times higher than that of the primary sealing lip, which is used to contain lubricants.

Finite Element Analysis on the Stress Distributions in Rail-Wheel Contacts of High Speed Trains (고속전철용 레일-휠 접촉에서 응력분포에 관한 유한요소해석)

  • 김청균;김기환
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.93-101
    • /
    • 1997
  • The numerical results on the stress distributions of rail-wheel contact problems are presented for three models in a high-speed rail system. These models which have straight and tapered (1:40 and 1:20) contact geometries between the wheelset and rail are analyzed using the finite element approach. From the simulation results we found that the tapered geometry (1:20) of railwheel contact base line showed very stable contact stress distributions for a whole contact position between the wheel and rail in a curved rail section. The FEM computed results may present an optimized slope geometry of rail-wheel contact in a high-speed railway system.

Frictional Contact Analysis of the compression-Induced Crack Surfaces using the Finite element Method (유한요소법을 이용한 압축력으로 인한 균열 표면의 마찰접촉 해석)

  • 김방원;이기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.517-522
    • /
    • 2000
  • When a body including a crack inside is subjected to the compressive forces, the crack is closed and sliding occurs on the crack surfaces. In this work, a subsurface crack subjected to a static or moving compressive load is analyzed with the finite element method considering friction on the crack surface. The friction on the crack surface is assumed to follow the Coulomb friction law. A numerical method based on the finite element method and iterative method is applied in this work. And the result is compared with the frictional contact of crack by ANSYS using contact 12 element. The numerical results of two methods are compared with the wellknown analytical solutions, and the accuracy of iterative method is checked..

  • PDF

A Theoretical Analysis on The Elastic Rough Contact (거친 탄성 면접촉의 이론해석)

  • 유형선;이은상
    • Tribology and Lubricants
    • /
    • v.2 no.2
    • /
    • pp.52-58
    • /
    • 1986
  • The contact problem of a rigid smooth plane and computer-slmuiated elastic rough surfaces is studied by divided the sampling intervals into three groups. An iso-parametric element ,is used to calculate the contact pressure-separation relationship accurately. It is obtained that: 1) the more asperity shows the higher contact pressure, 2) the smaller element gives the better results but the effect is negligible.

Finite element analysis for 3-D self-contact problems of C.v.joint rubber boots (3차원 자체접촉을 위한 유한요소해석에 의한 등속조인트 고무부트의 변형해석)

  • Lee, H.W.;Kim, S.H.;Lee, C.H.;Huh, H.;Lee, J.H.;Oh, S.T.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2121-2133
    • /
    • 1997
  • A finite element code is developed for 3-D self-contact problems, using continuum elements with a SRI(Selective Reduced Integration) scheme to prevent locking phenomenon by the incompressibility of rubber. Contact treatment is carried out in two ways : using the displacement constraints in case of rigid contact ; and imposing the same contact forces on two contact boundaries in case of self-contact. The finite element code developed is applied to the deformation analysis of C.V.joint boots which maintain lubrication conditions and protect the C.V.joint assembly from impact and dust. The boot accompanies large rotation depending on the rotation of the wheel axis and leading to the self-contact phenomena of the boot bellows. Since this contact phenomenon causes wear of the product and has great influence on the endurance life of the product, it is indispensable to carry out stress analysis of the rubber boots. In case of self-contact, various methods for determining contact forces have been suggested with an appropriate contact formulation. Especially, the types of penetration in self-contact are modularized to accelerate conputation with a contact algorithm.