• Title/Summary/Keyword: Contact Deformation

Search Result 767, Processing Time 0.033 seconds

Analysis of three force components of shear spinning (전기스피닝 공구의 삼분력 해석)

  • ;;Choi, J.C.;Kim, G.N.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.2
    • /
    • pp.88-93
    • /
    • 1981
  • The three force components of shear spinning are calculated by a newly proposed deformation model. The spinning process is understooed as shearing deformation arter uniaxial yuelding by ending, and shear stress .tau.$\sub$rz/ becomes .kappa. the yueld limit in pure shear, in the deformation zone. The tangential forces are calculated and then the feed forces and normal foeces are obtained by assuming a nuiform distribution of roller pressure on the contact surface. An optimum contact area is obtaned by minimizing the bending energy required to obtain the assumed deformation mechanism. The calculated forces are compared with experimental data form published literature and present experiments. Good agreement cetween calculated and experimental values for working forces is obtained over a wide range of process variables.

Average Flow Model with Elastic Deformation for CMP (화학적 기계 연마를 위한 탄성변형을 고려한 평균유동모델)

  • Kim Tae-Wan;Lee Sang-Don;Cho Yong-Joo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.331-338
    • /
    • 2004
  • We present a three-dimensional average flow model considering elastic deformation of pad asperities for chemical mechanical planarization. To consider the contact deformation of pad asperities in the calculation of the flow factor, three-dimensional contact analysis of a semi-infinite solid based on the use of influence functions is conducted from computer generated three dimensional roughness data. The average Reynolds equation and the boundary condition of both force and momentum balance are used to investigate the effect of pad roughness and external pressure conditions on film thickness and wafer position angle.

  • PDF

Coupled Analysis of Heat Transfer and Thermoelastoplastic deformation (열전달과 열탄소성변형의 연결해석)

  • 이용기;한흥남;오규환;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.47-54
    • /
    • 1994
  • The study is concerned with the coupled analysis of heat transfer and thermoelastoplastic deformation. The thermoelastoplastic model is very useful for the analysis of residual stress and the analysis of thermal stress as well as the analysis of metal forming. Heat of deformation, phase transformation and contact heat transfer boundary are considered. The contact heat transfer boundary is treated by the interpolation of shape function. The analysis of deformation and the analysis of heat transfer are carried out for the could upsetting and the hot rolling. The computed results are found to be in good agreement with the experimental results.

  • PDF

3-D Coupled Analysis of Deformation of the Strip and Rolls in Flat Rolling by FEM- Part II: Application (유한요소법을 활용한 평판압연에서의 롤 판 연계 해석 - Part II: 적용)

  • Park, H.J.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.234-239
    • /
    • 2017
  • A general approach is proposed for 3-D coupled FE analysis of the deformation of the strip and rolls in flat rolling. FE formulation, schemes for the treatment of contact occurring in a cluster of deforming objects, and the solution strategy are described in detail. The validity of the approach is examined through comparison with observed measurements. The approach is applied to the analysis of deformation in a four-high and six-high mill.

A Study on the Deformation Measurement of Backward Extrusion Dies using Strain Gauge (스트레인 게이지를 이용한 후방압출금형의 변형측정에 관한 연구)

  • Yeo, Hong-Tae;Song, Yo-Sun;Choi, Young;Heo, Kwan-Do
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.713-716
    • /
    • 2002
  • The dimensional accuracy of the cold forged products is strongly dependent on the elastic behavior of the die. The elastic deformation of the die is continuously changed during the process. Therefore, it is needed to measure the deformation of die. Strain gauges are used to measure the elastic strains in the die during cold backward extrusion process. The strain gauges are attached on the die surface and embedded at the interface between the die insert and the stress ring. In order to compare the results with the FE-analysis, the rigid-plastic FE-analysis of cold backward extrusion process using DEFORM-3D has been performed, and the analysis of elastic deformation of the die has been done by using ANSYS with non-linear contact.

  • PDF

Study on Characteristics of a Droplet in Two-dimensional Channel with Moving Bottom Wall (바닥면이 움직이는 이차원 채널 내 액적의 특성 연구)

  • Kim, Hyung-Rak;Yoon, Hyun-Sik;Jeong, Hae-Kwon;Ha, Man-Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.103-110
    • /
    • 2011
  • A two-dimensional immiscible droplet deformation phenomena on moving wall in a channel has been investigated by using lattice Boltzmann method involving two-phase model. The dependence of the deformation of the droplet with different sizes on the contact angle and the velocity of bottom wall has studied. When the bottom wall starts to move, the deformation of the droplet occurs. For the largest bottom wall velocity, eventually, the deformation of the droplet is classified into the three patterns according to the contact angle.

Numerical Analysis on Deformation of Submerged Structures using 2-Dimensional VOF-DEM Model

  • Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.31 no.9
    • /
    • pp.785-791
    • /
    • 2007
  • In this paper we proposed a model that the deformation of the submerged rubble mound breakwaters composed with materials of various size, induced by wave action, can be computed. The water particle kinematics by waves in porous mound structure are computed by CADMAS-SURF, then the deformation of structure is computed using DEM module. To investigate the interaction of wave and sectional deformation of structures, analysis is accomplished by two steps. Analysis at the first step is executed with incipient mound. And analysis at the second step is executed with deformed mound by wave action. Furthermore, behaviors of materials are influenced by various properties such as the contact stiffness and the friction angle. Therefore, in order to present the behavior of the element caused by various properties, computations are accomplished with random coefficients by using the Monte Carlo simulation.

Estimation of Surface Forces in Micro Rough Surface Contacts

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.63-64
    • /
    • 2002
  • In a micro-scale contact, surface forces such as capillary force and van der Waals Interaction significantly Influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (hydrophilicity), relative humidity and deformation of asperities In the real area of contact. A better understanding of these surface forces is of great necessity in order to find an optimal solution for reducing friction and adhesion of micro surfaces. We proposed an effective method to analyze capillary and van der Waals forces In nano-scale contact. In this method, Winklerian foundation model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height Images. Self-mated contact of diamond-like-carbon (DLC) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidify and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

  • PDF

Wheel-Rail Contact Analysis Considering Axle Deformation Using a One-Dimensional Beam Element (1차원 빔요소를 활용한 차축 변형고려 차륜-레일 접촉해석)

  • Choi, Ha-Young;Lee, Dong-Hyung;Kwon, Seok-Jin;Seo, Jeong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.139-145
    • /
    • 2017
  • It is necessary to analyze the exact contact position and contact stress of the wheel-rail in order to predict damage to the wheel and rail. This study presents a wheel-rail contact analysis model that considers the deformation of the axle. When a wheel-rail contact analysis is performed using a full three-dimensional model of the wheelset and rail, the analytical model becomes very inefficient due to the increase in analysis time and cost. Therefore, modeling the element-coupling model of the wheel and rail as a three-dimensional element and the axle as a one-dimensional element is proposed. The wheel-rail contact characteristics in the proposed analysis model for straight and curved lines were analyzed and compared with the conventional three-dimensional analysis model. Considering the accuracy of the analysis results and time, the result shows that the proposed analytical model has almost the same accuracy as a full three-dimensional model, but the computational effort is significantly reduced.

Experimental Study on Simple Dimensionless Parameter in Higher Pair (점접촉에서 단무차원매개변수에 관한 실험적 연구)

  • 김경모
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.3
    • /
    • pp.34-40
    • /
    • 1994
  • It is important to have exact informations on the real contact mechanism between spheres and rough plates under various normal loads, sphere diameters and combined surface roughnesses. Most previous papers have proposed the questions of the errors which might be incurred when the Hertzian theory is used to calculated the contact deformation and the contact pressure of practical higher pair. So, this study investigates the real contact deformation between a rough sphere and a rough plate by three experimental methods far from any assumptions and theorems. The soot coating method among them is used successfully. Accordingly, this study presents the simple dimensionless parameter to predict such errors to occur in the design of high pair members and to govern the real mechanism of two-body higher pair.

  • PDF