• 제목/요약/키워드: Contact/Bending stress

검색결과 110건 처리시간 0.02초

인벌류트 스퍼기어 치형 강도에 관한 연구 (A Study the Development of Involute Spur Gears Profiles Strength)

  • 조성철
    • 한국산업융합학회 논문집
    • /
    • 제9권4호
    • /
    • pp.269-276
    • /
    • 2006
  • Strength Design method for involute spur gears is developed. The developed gear strength design system can design the optimized gear that minimize the number of pinion teeth with face tooth. Method of optimization is matrix form which is developed from this study. Design variables are transmitted power, gear volume, gear ratio, allowable contact stress and allowable bending stress, etc. Gear design method developed this study can be apply to the gears of plants, machine tools, automobiles.

  • PDF

인벌류트 베벨기어 설계 기술에 관한 연구 (A Study on Technology for Involute Bevel Gear Design)

  • 조성철
    • 한국안전학회지
    • /
    • 제18권4호
    • /
    • pp.44-50
    • /
    • 2003
  • Design method for involute bevel gears is developed. The developed gear design system can design the optimized gear that minimize the number of pinion teeth with face tooth. Method of optimization is MS(matrix search) which is developed from this study. Design variables are pressure angle 20., transmitted power, gear volume, gear ratio, allowable contact stress and allowable bending stress. etc. Gears design method developed this study can be applied to the plane, helicopter, printer, machine tools.

전동차 감속기용 헬리컬 기어의 강도평가 (Stress Analysis of Helical Gear for a Railway Reducer)

  • 이슬;이동형;황석철;이권희
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.55-59
    • /
    • 2012
  • This study performs the bending and contact stress analyses for a pair of mating gears during rotation. The interested gears are used for a railway reducer. In general, the railway reducer needs high speed rotation, which leads to a large gear ratio. Thus, it is not easy to apply finite element method to investigate the strength performance, since the size of a gear is much larger than that of a pinion. In this study, the bending and contact stresses determined from FEM are compared with the values determined from the ISO code.

베벨기어 설계 시스템 개발에 관한 연구 (A Study the Development of Bevel Gears Design System)

  • 조성철
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2002년도 추계 학술논문발표회 논문집
    • /
    • pp.263-269
    • /
    • 2002
  • Design method for Involute bevel gears is developed. The developed gear design system can design the optimized gear that minimize the number of pinion teeth with face tooth. Method of optimization is MS(matrix search) which is developed from this study. Design variables are pressure angle 20, transmitted power, gear volume, gear ratio, allowable contact stress and allowable bending stress, etc. Design method developed this study can bd applide to the plane, machine tools, automobiles.

  • PDF

전동차용 헬리컬기어의 축 조립오차에 따른 굽힘강도의 영향 (Effect of Shaft Misalignment on Bending Strength of Helical Gear for Metro Vehicles)

  • 이동형;최돈범;강성웅;최하영
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.64-72
    • /
    • 2022
  • Gear designers need to select the proper tolerances for deviations in both the center distance and parallelism of axes because these deviations cause high stresses and lead to fatigue breakage of the teeth. In this study, a three-dimensional finite element analysis model was developed for a helical gear used in metro vehicles, and a bending stress analysis method for gear pairs was established according to the contact position change. Using this model, the effect of shaft misalignment due to the center distance and shaft parallelism deviations on the bending stress of the gear was analyzed. As a result, the magnitude of the bending stress changed nearly linearly with the change in the center distance deviation. The tooth contact of the helical gear is biased toward the end of the tooth width when the parallelism deviations of the shaft occur, and the tooth root bending stress increases.

상용 유한 요소 프로그램을 이용한 차량 조향 장치의 랙과 피니언의 강도 해석 (A Strength Analysis of Rack and Pinion of Steering Gear Assay using a Commercial Finite Element Program)

  • 성기웅;임장근
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.97-103
    • /
    • 2008
  • In general, the strength of gears is calculated using the formula of AGMA or JGMA. But these formula can not be applied directly to the strength calculation of the rack and pinion of steering gear assay, because of complex tooth and contact shapes. So Lewis bending stress and Hertzian contact stress formula are generally used for the design of rack and pinion of steering gear assay. But these formula do not also give the exact stress of rack and pinion. In this paper, comparing the finite element analysis results and the experimentally measured values, it is shown that the finite element modeling technique of the rack and pinion of steering assay is reasonable.

산업용 인벌류트 치차 설계를 위한 자동화 기술에 관한 연구 (A Study on Automatic Technology for a industrial Industrial Involute Gears Design)

  • 조성철;변문현
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.39-46
    • /
    • 1997
  • This study describes a computer aided design system on involute gear for power transmition. Input data for gear design are pressure angle $20^{\circ}$, transmitted power, gear volume, gear ratio, addendum ratio of rack, dedendum ratio of rack, edge radius of rack, allowable contact stress and allowable bending stress etc. Bending strength contact strength and scoring are considered as the design constraints. Method of optimization developed this study. The developed gear design system can design the optimized gear that minimize the number of pinion teeth with face tooth.

  • PDF

굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발 (Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane)

  • 안준욱;이광희;유승규;조재상;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.

Analysis of the Reduction Gear in Electric Agricultural Vehicle

  • Choi, Won-Sik;Kwon, Soon-Goo
    • 한국산업융합학회 논문집
    • /
    • 제21권4호
    • /
    • pp.159-165
    • /
    • 2018
  • In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.