• Title/Summary/Keyword: Construction waste

Search Result 1,496, Processing Time 0.03 seconds

Patterns and Factors Causing Construction Waste Generation in High-Rise Housing Projects in Korea : A Case Study (고층 주거건물 프로젝트에서 발생하는 폐기물 발생패턴 및 발생 유발 요인 분석)

  • Cha, Hee-Sung;Shin, Dong-Woo;Kim, Jee-Hye
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.3 s.31
    • /
    • pp.159-168
    • /
    • 2006
  • In order to respond to interest and regulations in sustainable environment which is increasing, construction industry needs to establish a sustainable production system. When generation of wastes can be diminished and recycling of them raised in the construction site as a part of a sustainable production system, it might contribute to not only establishing a sustainable production system but also gaining economical profit. This study is a preliminary research for establishing a sustainable production system, which aims to identify construction waste generation patterns and factors causing construction waste generation. Case studies were implemented to investigate these patterns and factors.

The Comparison and Analysis of Waste Quantity through a Case Study of Demolition Works (해체공사의 사례분석을 통한 폐기물 발생량 비교분석)

  • Kim, Chang-Hak;Lee, Kyoung-Hee;Kim, Hyo-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.4
    • /
    • pp.131-139
    • /
    • 2008
  • Now, one of the greatest concerns at home and abroad is eco-friendly construction. Above all, the reduce and recycle of the construction waste may be one of the most important things. The construction waste has been produced most at demolition phase, but the research into that area has not being to make nearly within the country. Recently, as the government have realized the importance of that area, they are making research to improve traditional demolition methods. Also, they are preparing to make a raw to enforce deconstruction during demolition phase. This research has analyzed the problems and waste types which produced during the demolition works by surveying in site. Until now, in the interior, the right quantity basis has not been suggested, because of the absence of any methods to estimate it accurately. Therefore, this study has compared and analyzed owner's ordering quantity, drawing analysis quantity with measuring the waste to produced at site during demolition works, this research results are expected to be the important materials for future research into the construction waste area.

A Development of Computerized Management System for Deconstruction (분별해체공사 통합관리 시스템의 개발)

  • Kim, Hyo-Jin;Kim, Chang-Hak
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.638-641
    • /
    • 2004
  • This study suggests the optimum deconstruction management system for minimizing construction waste and increasing reuse and recycle rate of material to be different from traditional demolition. The purpose of this system is to minimize environmental damages and reduce construction waste quantity of a country by planning and operating preliminarily estimation of demolition quantity, demolition methods of each structural elements and reuse or recycle methods of C&D waste. This system is consist of four modules such as planning of preliminary demolition survey, estimating of demolition quantity, planning of demolition schedule and planning of construction waste management, and these all modules can be used individually module according to user's utilization purpose.

  • PDF

Manufacturing of Calcium Silicate Cement Using Construction Waste (건설폐기물을 활용한 이산화탄소 반응경화 시멘트 제조에 관한 연구)

  • Lee, Hyang-Sun;Son, Bae-Geun;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.47-48
    • /
    • 2023
  • In the domestic industrial sector, greenhouse gases emitted from the cement industry account for about 10%, with most of them generated during the cement clinker calcination process. During the calcination process, 57% of carbon dioxide is emitted from the decarbonation reaction of limestone, 30% from fuel consumption, and 13% from electricity usage. In response to these issues, the cement industry is making efforts to reduce carbon dioxide emissions by developing technologies for raw material substitution and conversion, improving process efficiency by utilizing low-carbon alternative heat sources, developing CO2 capture and utilization technologies, and recycling waste materials. In addition, due to the limitations in purchasing and storing industrial byproducts generated from industrial facilities, many studies are underway regarding the recycling of construction waste. Therefore, this study analyzes the manufacture of calcium silicate cement (CSC), which can store carbon dioxide as carbonate minerals in industrial facilities, and aims to contribute to the development of environmentally friendly regenerated cement using construction waste.

  • PDF

Experimental Research on 2nd generation of Cyanobacteria Living Building Material (2세대 남세균 혼입 생체 건축 자재 생산을 위한 잔골재-젤라틴 복합체의 실험적 연구)

  • Park, Jiyoon;Son, Dasom;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.197-198
    • /
    • 2023
  • Construction waste takes about 50% of total industrial waste. Researchers focuses to decrease the amount of construction waste by recycling the waste during the construction site. However, research about recycling the gelatin-sand composite is not yet been studied. This research is an experimental research on recycling the total specimen of gelatin-sand composite. Two methods were held when making the 2nd generation of the gelatin-sand specimen. As a result, there was no difference in flexural strenght between two different method of 2nd generation of specimen. However, the second method of 2nd generation showed about 20% higher compressive strength than the first method.

  • PDF

A Development of Computerized Management System for Construction and Demolition Waste (건설해체공사의 폐기물 통합관리 시스템의 개발)

  • Kim, Chang Hak;Kim, Hyo Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.627-634
    • /
    • 2006
  • Now, in a domestic country, the rebuilding and redevelopment of existing houses has been rapidly increasing with an economic growth and the improvement of living condition. As a result of that, a lot of C&D waste has been also produced. Nevertheless, it is not easy to find the research results for appropriate treatment and management of C&D waste in domestic. Therefore this study suggests the optimum deconstruction management system for minimizing construction waste and increasing reuse or recycle rate of material different from traditional demolition. The system makes it possible to plan and manage in advance quantity of C&D waste, demolition methods of each structural elements and application methods of produced C&D waste through an integrated and computerized system. The purpose of the system is ultimately to contribute to minimizing environmental damages and reducing construction waste quantity of a country. This system is largely composed of four modules such as planning of preliminary demolition survey, estimating of demolition quantity, planning of demolition schedule and planning of construction waste management and each module can be also used individually according to the purpose of a user.

Hydration property of Recycled Cement Using Waste Cementitious Powder (폐콘크리트 미분말을 이용하여 제조한 시멘트의 수화특성)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.47-48
    • /
    • 2014
  • This study is to hydration property of low carbon type recycled cement from waste cementitious powder and cement raw materials. Waste cementitious powder possible to low carbon type recycled cement in small part of additive materials. Also, low carbon type recycled cement using waste cementitious powder is suitable for low heat type cement.

  • PDF

A Study on the Utilization of Industrial Waste to Improve the Durability of Base Concrete (바탕콘크리트 내구성 향상을 위한 산업폐기물 활용에 관한 연구)

  • Kim, Dae-Geon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.107-108
    • /
    • 2022
  • This study aims to solve environmental problems by reducing complex degradation and recycling industrial waste by utilizing waste fibers and blast furnace slags, which are industrial by-products. In addition, it is intended to secure long-term durability to reduce cracks. To this end, the disadvantages of fiber-reinforced concrete are to solve the problem of lowering liquidity and ensuring curing time, and to find the optimal combination when waste fibers and blast furnace slag are used together.

  • PDF

Analysis of Utilizing Recycled Cement Containing Calcium Phosphate as a Solidifying Material for Radioactive Waste Disposal (인산칼슘이 함유된 재생시멘트의 방사성 폐기물 고화재 활용성 검토)

  • Gong, Dong-Geon;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.191-192
    • /
    • 2021
  • For the stable management of radioactive waste, it is necessary to secure a solidification treatment technology capable of immobilizing hazardous radioactive elements in a solid matrix. In this study, the feasibility of using recycled cement recovered from waste concrete as a solidifying material for radioactive waste was analyzed.

  • PDF