• Title/Summary/Keyword: Construction temperature

Search Result 2,734, Processing Time 0.027 seconds

READABILITY TEST OF RFID TEMPERATURE SENSOR EMBEDDED IN FRESH CONCRETE

  • Julian Kang;Jasdeep Gandhi
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.754-757
    • /
    • 2009
  • The current concrete maturity method implemented with temperature sensors requires an extensive wiring, which is not often acceptable on construction site due to harsh working environment. Radio Frequency Identification (RFID) technology appears to provide a solution for the wiring issue because of its ability of sending data wirelessly. An RFID tag integrated with a temperature sensor and placed within fresh concrete may be able to read temperatures of concrete and transmit them to an RFID reader wirelessly in real-time. However the previous research illustrated that the RFID signal gets dispersed in liquid medium. One may speculate then whether RFID signals travel through fresh concrete with high water content. Would the tag's burying depth within fresh concrete affect its readability? The paper presents the preliminary results of our on-going investigation on the readability of RFID tags in concrete against water content and burying depth of tags.

  • PDF

Influence of Climate Change on the Lifecycle of Construction Projects at Gaza Strip

  • El-Sawalhi, Nabil;Mahdi, Mahdi
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.2
    • /
    • pp.1-10
    • /
    • 2015
  • There is a high confidence based on scientific evidence that climate is changing over time. Now climate change is considered as one of the challenges facing the construction industry. As no project is risk free and climate change has a strong impact on the different phases of the construction project lifecycle. This research aimed at providing a platform of knowledge for the construction management practitioners about the impacts of climate change on the construction projects lifecycle, identify the most dangerous climate change factors on the construction project lifecycle, and identify the most affected phase by climate change factors through the construction projects lifecycle. The study depended on the opinions of civil engineers who have worked in the construction projects field among the reality of Gaza Strip. Questionnaire tool was adopted as the main research methodology in order to achieve the desired objectives. The questionnaire included 127 factors in order to obtain responses from 88 construction practitioners out of 98 representing 89.79% response rate about the influence of climate change on the generic lifecycle of construction projects. The results deduced that the most significant influence on the construction project lifecycle was related to the extreme weather events, rainfall change, and temperature change respectively. There was a general agreement between the respondents that the most affected phase by temperature, rainfall, and extreme weather events is the execution phase. The results also asserted with a high responses scale on the need to alternative procedures and clear strategies in order to face the climate change within construction industry.

Stress variation analysis based on temperature measurements at Zhuhai Opera House

  • Lu, Wei;Teng, Jun;Qiu, Lihang;Huang, Kai
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • The Zhuhai Opera House has an external structure consisting of a type of spatial steel, where the stress of steel elements varies with the ambient temperature. A structural health monitoring system was implemented at Zhuhai Opera House, and the temperatures and stresses of the structures were monitored in real time. The relationship between the stress distribution and temperature variations was analysed by measuring the temperature and stresses of the steel elements. In addition to measurements of the structure stresses and temperatures, further simulation analysis was carried out to provide the detailed relationship between the stress distributions and temperature variations. The limited temperature measurements were used to simulate the structure temperature distribution, and the stress distributions of all steel elements of the structure were analysed by building a finite element model of the Zhuhai Opera House spatial steel structure. This study aims to reveal the stress distributions of steel elements in a real-world project based on temperature variations, and to supply a basic database for the optimal construction time of a spatial steel structure. This will not only provide convenient, rapid and safe early warnings and decision-making for the spatial steel structure construction and operation processes, but also improve the structural safety and construction accuracy of steel space structures.

A Research on Attachment Strength of Self-Adhesive Waterproofing Sheet in Low-Temperature Environment (저온환경에서 자착형 방수시트의 부착성능에 관한 연구)

  • An, Ki-Won;Park, Wan-Goo;Heo, Neung-Hoe;Kim, Yun-Ho;Park, Jin-Sang;Oh, Sang-keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.27-28
    • /
    • 2012
  • This study is to low-temperature in using self-adhesive waterproofing sheet. Using self-adhesive waterproofing sheet is very comfortable in a waterproofing construction site. However, when self-adhesive waterproofing sheet is constructed from a low-temperature environment, there has been a attachment strength shortage. Therefore, this study on the attachment strength of self-adhesive waterproofing sheet is to investigate the low-temperature in the environment.

  • PDF

Fire Resistant Performance of Anti-Spalling ECC Layers in High-Strength Concrete Structures (ECC로 피복된 고강도콘크리트의 폭렬저감 및 열적특성에 관한 실험적 연구)

  • Lee, Jae-Young;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.199-202
    • /
    • 2008
  • The purpose of this study is to obtain the fundamental fire resistance performance of engineered cementitious composites(ECC) under fire temperature in order to use the fire protection material in high-strength concrete structures. The present study conducted the experiment to simulate fire temperature by employing of ECC and investigated experimentally the explosion and cracks in heated surface of these ECC. In the experimental studies, 3 HSC specimens are being exposed to fire, in order to examine the influence of various parameters(such as depth of layer=20, 30, 40mm; construction method=lining type) on the fire performance of HSC structures. Employed temperature curve were ISO 834 criterion(3hr), which are severe in various criterion of fire temperature in building structures. The numerical regressive analysis and proposed equation to calculate ambient temperature distribution is carried out and verified against the experimental data. By the use of proposed equation, the HSC members subjected to fire loads were designed and discussed.

  • PDF

The Properties of Rheology of Underwater-Hardening Epoxy Resin According to the Temperature (온도에 따른 수중경화형 에폭시수지의 레올로지 특성)

  • Jung Eun-Hye;Kang Cheol;Kawg Eun-Gu;Bae Kee-Sun;Lee Dae-Kyung;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.49-52
    • /
    • 2006
  • Epoxy resin has less reaction shrinkage, has better water proofing and thermal resistance than other repairing materials, to it has been applied broadly to repair and finish buildings and infrastructures. Although the ambient temperature constructed is varied with the seasons and epoxy resin has to mix with appropriate hardener due to the non self-hardening, as the real construction of it, the ambient temperature is ignored and the blending ration of epoxy resin and hardener is fixed. Also, because of the hardening time is aimed to temperature condition and the tolerance of blending ratio, we investigated the variation of viscosity according to ambient temperatures and hardener ratios. As a results of study, we can select the economical blending ratio of the epoxy resin and hardener according to site situation.

  • PDF

Study on Temperature History and Compressive Strength of Mock-up Concrete Considering Seasonal Change (매스콘크리트의 계절에 따른 온도이력과 압축강도에 관한 실험)

  • Kim Young-Joo;Gong Min-Ho;Kim Kwang-Ki;Yang Dong-Il;Pack Moo-Young;Jung Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.89-92
    • /
    • 2005
  • Our country has experienced variations in temperature as belong to the area of the continental climate that shows four significant seasons. These occur quality of construction. As the hydration of cement processes, the strength of concrete is developed. In order to improve the quality of concrete, various conditions including temperature and humidity should be maintained appropriately and concrete itself should be cured sufficiently This paper is basic experiment for estimating influence of strength by seasonal mock-up concrete's heat of hydration and estimate relationship of compressive strength development by curing temperature. And show basic document as quality control.

  • PDF

Experimental Study on the Basic Properties of Concrete Composition Mixed with Pigments Having been Color Changed by the Temperature (감온성 안료의 혼입에 따른 온도반응 색변환 콘크리트의 기초물성에 관한 실험적 연구)

  • Lee, Joo-Hun;Park, Yong-Kyu;Jeon, In-Ki;Yoon, Ki-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.149-152
    • /
    • 2009
  • Recent trends show an increased usage of 'colored concrete', a inorganic pigmented concrete mix, especially in smalll to large scale buildings. However, due to lack of varieties, current usage of colored concrete is limited to the one or two simple color of the time in construction work. so, this study is to investigate the properties of concrete adding temperature reactive pigment. The results of the experiment, the basic material characteristics of concrete such as of compressive strength and slump is affected by the amount rate of adding the temperature reactive pigment. And, it showed the excellent color expression and changing with temperature reactive pigment.

  • PDF

Curing Temperature of Concrete Using Bubble Sheet with Carbon-based Photothermal Materials (탄소계 광발열 소재 혼입 버블시트를 적용한 콘크리트의 양생온도 특성)

  • Lee, Seung-Min;Lee, Hyeon-Jik;Baek, Sung-Jin;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.45-46
    • /
    • 2023
  • This study examined the curing temperature of concrete with a photothermal insulation sheet to shorten the curing time of concrete as part of construction cost and period reduction. According to the experiment results, the heating performance effect is confirmed through the temperature difference between photothermal insulation sheet and bubble sheet. And it has a high curing temperature in the order of bubble sheet (photo heating material B) > bubble sheet (photo heating material A) > bubble sheet on same layers.

  • PDF

Physical Properties of 50MPa and 80MPa Ternary High Strength Concretes before and after Concrete Pumping

  • Lee, Bum-Sik;Kim, Seong-Deok;Jun, Myoung-Hoon;Park, Sung-Sik;Park, Su-Hee;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.451-459
    • /
    • 2012
  • At the Korea Land and Housing Corporation(LH), concretes with high design strength of 50 MPa and 80 MPa that are composed only of ordinary Portland cement, blast furnace slag, and fly ash are developed. To determine whether the developed high strength concretes have the same properties when they are produced in batch plant(B/P) condition in the ready mixed concrete plant, and as existing high strength concretes, field tests are performed and material properties are evaluated. To investigate the material properties of the high strength concretes before and after pumping, compressive strength, flowability, air content, hydration temperature, pumping and compactability are evaluated. In field tests, before and after pumping, flowability satisfied the relevant criteria. In terms of air content, while it was slightly decreased after pumping, it satisfied the requirements. Hydration temperature criteria were satisfied, and compactability was excellent as well. The study found that the developed ternary high strength concretes have the same properties as existing high strength concretes. They can also be useful for the construction of high-rise buildings, as they are economical.