• 제목/요약/키워드: Construction of the wall

검색결과 1,858건 처리시간 0.035초

분리형 보강토공법의 고속도로 적용사례 (A Case Study on the Discrete Segmental Retaining Wall in Highway Construction)

  • 노한성;최영철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.337-344
    • /
    • 2001
  • The application of mechanically stabilized earth wall(MSEW) with segmental front panel has been increasing in highway construction due to its cost-effectiveness. However, some failures during construction have been reported and many field engineers are reluctant to select this method for important structure. One of the main reasons may be that there is no moderate specification for design and construction of MSEW yet. This paper discussed the main results of analysis on a case of block-type segmental retaining wall in highway construction. Based on the results, some recommendations on design and construction method of MSEW are presented.

  • PDF

노출콘크리트 중단열 벽체의 단열성능 분석 (Insulation Performance Analysis of Exposed Concrete Sandwich Wall)

  • 여창재;유정호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.105-106
    • /
    • 2016
  • The study of the sandwich wall with the increasing interest in building energy consumption have been actively conducted. This study designed exposed sandwich wall in the light of energy saving design standard and thermal bridge of share connection. The heat insulating performance was analyzed U-fator using calculation program provided in passive houses association and KS F 2277 (method of measuring thermal insulation of construction component materials).

  • PDF

내진제약조건(耐震制約條件)을 갖는 옹벽(擁壁)의 최적설계(最適設計) (Optimum Design of Retaining Wall with Seismic Constraints)

  • 김기대
    • 한국산업융합학회 논문집
    • /
    • 제6권2호
    • /
    • pp.95-102
    • /
    • 2003
  • In this paper, optimum design is considered over the retaining wall with seismic constraints. The sequential linear programming method(SLP) is used as a rational approach to this optimum design. To make a comparison between the seismic design and the normal design, retaining wall with 4~7m height were adopted. It is shown that the seismic design is more expensive (over 30%) than the normal design for the construction cost.

  • PDF

해안매립지반에서의 토류가시설 시험시공 및 변경사례 (A Field Case on the Pilot Constructions and Changes of a Braced Cut Wall in a Coastal Filled Land)

  • 황영철;김기림;김연정
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.46-55
    • /
    • 2006
  • There are many kinds of braced cut wall methods as the sheet pile, SCW, CIP and slurry wall which is adoptable for a deep excavation construction in a coastal filled land. The braced cut wall which has a strong stiffness is very stable but it has the weak point that the construction cost is high. Thus when a braced cut wall is designed, the geotechnical engineers choose the braced cut wall which has more safe and economic in the consideration of surrounding buildings near the construction site. Especially, when the sheet pile method as a braced cut wall is cheesed, the layer order and consistence of a coastal deposit stratum are considered and the pile driving method is also considered. This paper introduces the case that the originally box-type sheet pile wall was changed to U-type and high strength material after the pilot test at the subway construction site in a coastal filled land. This paper also introduces the case that the sheet pile's driving method was changed to special method in the section of the temporary coffer dam which had made when the present coastal filled land was formed.

  • PDF

다 자유도 매니퓰레이터를 이용한 커튼월 시공 자동화에 관한 연구 (A Study of the Automation System using a Multi-DOF Manipulator for the Curtain Wall Installation in a Skyscraper)

  • 유승남;이승열;최현석;이계영;이상헌;한창수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.940-945
    • /
    • 2004
  • Recently, the trend in architectural forms has been toward taller and larger building. The building materials, therefore, are getting larger and heavier as wall. Most of the construction projects are, however, dependent on outdated equipment and human resources. Construction processes up to now face a number of problems, including dangerous work, high construction cost and heterogeneous construction quality. In various construction sites, automation in construction has been introduced to address these problems. This paper proposes a human-machine cooperative system in the construction site; the system utilizes construction of a curtain wall in tall buildings. The use of automation system at construction sites can reduce the need of human involvement. Construction time and cost can be reduced as well. The most important aspect of the use of automation system at construction sites is prevention of accidents.

  • PDF

건식경량벽체 요구성능 도출 도구 개발에 관한 연구 (A Development of performance criteria tool for lightweight dry wall)

  • 지석원;윤상천;최수경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.215-216
    • /
    • 2019
  • The following conclusions were reached through the research on the development of the required performance extraction tools for the application and utilization of various construction methods of lightweght dry wall. 1) Performance required for walls of apartment buildings can be divided into safety, habitation, durability and productivity. Among these, horizontal load resistance, shock resistance, anti-seismic performance, insulation, and acoustic characteristics are the main performance that correspond to dry walls. In addition, safety related to toxic gases and contaminants are required according to recent eco-friendly requirements. 2) To select a wall according to the required performance of an inner wall applied to an apartment, a map tool in the form of 2D matrices was constructed to enable the required performance to be applied, indicating that the wall location and wall material and its differentiating according to the old method.

  • PDF

Mechanical behavior test and analysis of HEH sandwich external wall panel

  • Wu, Xiangguo;Zhang, Xuesen;Tao, Xiaokun;Yang, Ming;Yu, Qun;Qiu, Faqiang
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.153-162
    • /
    • 2022
  • Prefabricated exterior wall panel is the main non-load-bearing component of assembly building, which affects the comprehensive performance of thermal insulation and durability of the building. It is of great significance to develop new prefabricated exterior wall panel with durable and lightweight characteristics for the development of energy-saving and assembly building. In the prefabricated sandwich insulation hanging wall panel, the selection of material for the outer layer and the arrangement of the connector of the inner and outer wall layers affect the mechanical performance and durability of the wall panels. In this paper, high performance cement-based composites (HPFRC) are used in the outer layer of the new type wall panel. FRP bars are used as the interface connector. Through experiments and analysis, the influence of the arrangement of connectors on the mechanical behaviors of thin-walled composite wall panel and the panel with window openings under two working conditions are investigated. The failure modes and the role of connectors of thin-walled composite wallboard are analyzed. The influence of the thickness of the wall layer and their combination on the strain growth of the control section, the initial crack resistance, the ultimate bearing capacity and the deformation of the wall panels are analyzed. The research work provides a technical reference for the engineering design of the light-weight thin-walled and durable composite sandwich wall panel.

Evaluation of Construction RCB Exterior Wall Formwork according to Placing Height on Nuclear Power Plant

  • Song, Hyo-Min;Sohn, Young-Jin;Shin, Yoonseok
    • 한국건축시공학회지
    • /
    • 제15권6호
    • /
    • pp.653-660
    • /
    • 2015
  • Technologies for reducing construction duration are key factors in nuclear power plant construction projects, as a reduction in construction duration at the construction phase leads to a reduction in construction cost and an increase in profits through the early operation of the nuclear power plant. To analyze the constructability of the height of single-layer placement of formwork for the Reactor Containment Building (RCB) exterior wall through lateral pressure according to the height of concrete placement, the deformation criteria for formwork, and a new form design, 'MIDAS GEN (hereinafter referred to as MIDAS)' is used in this study. The cost and workload of formwork are derived according to the unit of height of the RCB exterior wall. Based on the result, it was found that the higher the RCB exterior wall, the higher the material cost, and the less the construction duration and the less the total number of formwork layers. Based on this result, it is believed that the material cost and the construction duration can be appropriately determined according to the formwork height.

Research on no coal pillar protection technology in a double lane with pre-set isolation wall

  • Liu, Hui;Li, Xuelong;Gao Xin;Long, Kun;Chen, Peng
    • Geomechanics and Engineering
    • /
    • 제27권6호
    • /
    • pp.537-550
    • /
    • 2021
  • There are various technical problems need to be solved in the construction process of pre-setting an isolation wall into a double lane in the outburst prone mine. This study presents a methodology that pre-setting an isolation wall into a double lane without a coal pillar. This requires the excavation of two small section roadways to dig a wide section roadway, followed by construction of the separation wall. During this process the connecting lane is reserved. In order to ensure the stability of the separation wall, the required bearing capacity of the isolation wall is 4.66 MN/m and the deformation of the isolation wall is approximately 25 cm. To reduce the difficulty of implementing support the roadway is driven by 5 m/d. After the construction of the separation wall, the left side coal wall is brushed 1.5 m to make the width of the gas roadway reach 2.5 m and the roadway support utilizes anchor rod, ladder beam, anchor cable beam and net configuration. During construction, the concrete pump and removable self-propelled hydraulic wall mold are used to pump and pour the concrete of the isolation wall. In the process of mining, the stress distribution of coal body and isolation wall is detected and measured on site. The results demonstrate that the deformation of the surrounding rock of roadway and separation of roof in the roadway is small. The stress of the bolt and anchor cable is within equipment tolerance validating their selection. The roadway is well supported and the intended goal is achieved. The methodology can be used for reference for similar mine gas control.