• Title/Summary/Keyword: Construction Waste

Search Result 1,502, Processing Time 0.024 seconds

A Study on the Economic Estimation of the Recycling of Construction Waste (건설폐기물(建設廢棄物) 재활용(再活用) 과정에 대한 경제성(經濟性) 평가(評價) 연구(硏究))

  • Park, Won-Woo;Lee, Sang-Duck;Min, Bo-Ra;Park, Lee-Ran;Gim, Ui-Gyeong;Baek, Mi-Hwa;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2008
  • Amount of waste is always generated in industrialization process and it is gradually increasing. Domestic and industrial waste in 2003 increased by 9.5 percent than that of the last year(2002), whereas the amount of construction waste increased largely by 21 percent. Recently construction waste of total waste accounts for nearly 50 percent, waste concrete and Ascon from the construction waste takes up to 73 percent. Furthermore, amount of natural materials are gradually decreasing, that is, they are not sufficient any more. Owing to these reasons, the importance of recycling construction waste has been emphasized. The use of recycling aggregate makes the disposal of construction waste easier as well as protects environment from gathering raw aggregate. Also, it has the alternative effect economizing the insufficient new natural aggregate. This study employs the cost-benefit model to analyze the economic effect of construction waste recycling of Ascon which takes relatively high part of the total waste. The cost-comparison between raw aggregate and recycling aggregate were analyzed. With the model, the economic effect of Ascon recycling in 2003 and 2004 in capital area of Korea were analysed. Cost comparison between raw aggregate and recycling aggregate were also carried out. The result showed that the economic effect of Ascon recycling increased to 0.0808 for 2004 as compared 0.0694 for 2003. We could not conclude using above data, but this result shows that the economic benefit of Ascon recycling of construction waste has increased.

Strength Development of Dry-Mixed Earthen Concrete Incorporating Red Mud and Recycled Asphalt Concrete Aggregates (폐아스콘 순환골재를 활용한 레드머드 혼입 건식 흙콘크리트의 강도 발현 특성)

  • Kang, Suk-Pyo;Park, Kyu-Eun;Kim, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.403-411
    • /
    • 2024
  • This study investigated the use of recycled aggregate from waste asphalt concrete in dry soil concrete mixed with red mud. The results showed that dry soil concrete utilizing waste asphalt recycled aggregate had relatively lower compressive strength compared to that using crushed aggregate. However, dry soil concrete mixed with red mud using waste asphalt recycled aggregate achieved a compressive strength of over 18.0MPa, meeting the highest performance standard for parking lot use, when the cement content was more than 250kg/m3.

A Guideline for Construction Management Plan Based on the Characteristics of $CO_2$ Emissions: A Case Study for a High-Rise Residential Building Project ($CO_2$ 배출 특성을 고려한 건설폐기물 관리방안 수립기준: 고층 주거건물 건설 프로젝트를 대상으로 한 사례조사)

  • Kim, Jee-Hye;Shin, Dong-Woo;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.6
    • /
    • pp.150-158
    • /
    • 2007
  • As the amount of $CO_2$ emission in Korea is ranked 9th and the increasing rate of $CO_2$ emissions highest in the world, it is strongly necessary to devise methods to decrease the amount of $CO_2$ in each industry as the basis of establishing environmentally sustainable production system. This paper aims to identify the characteristics of $CO_2$ emissions from construction wastes throughout the simplified LCA (Life Cycle Assessment) and suggest the strategic guideline for the construction waste management plan to decrease $CO_2$. As a result of LCA on the case of a high-rise residential building project, total sum of $CO_2$ emission generated from construction wastes appeared as 6,818,123kg-$CO_2$ and $CO_2$ emission per unit floor area as 21.01kg-$CO_2/{\beta}{\ge}$. The principal waste materials generating more than 95% of $CO_2$ are materials such as reinforcing bar, temporary materials, cement, ready-mixed-concrete, concrete products, and tile, which have relatively high unit emission rate of $CO_2$ in the process of production. Besides, more than 92% of $CO_2$ was generated from the activities such as structure work, plaster work, temporary work, and tile and stone work, which are generally executed in the early phase of the whole construction period. Reflecting these results, the guideline for the construction waste management plan was recommended. If the waste management plan is established considering the guideline suggested, there would be high potential to decrease the amount of $CO_2$ generated from construction wastes.

Cost Analysis of Recycled Aggregate Production on Airport Pavement (공항포장용 순환골재의 처리방법별 경제성 분석)

  • Kang, Seung Min;Lee, Hwal Ung;Yang, Sung Chul
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.39-47
    • /
    • 2014
  • PURPOSES : This study aimed to analyze economic effect of recycled aggregate production on job-site airport pavement. METHODS : The validation of site recycling for waste concrete as economic efficiency is analyzed through the case study of site recycling at an O airport pavement construction. The break-even point for the cost of site recycling was estimated according to two different waste concrete processing methods such as job-site recycling and processing on commission (or plant). RESULTS : Job-site recycling cost decreases as the use rate of job-site recycled concrete aggregate increases, or the amount of concrete waste increases, but transporting distance decreases. It was shown in an O airport case that as the use rate of job-site recycled concrete aggregate exceeds 61.4 %, the job-site recycling cost is cheaper than the processing cost on commission. CONCLUSIONS : The results of this study can utilize basic data of feasibility for site recycling of waste concrete on airport pavement construction.

Utilization of Waste Concrete Powder from the Viewpoint of LCA CO2 (LCA CO2 관점에서의 콘크리트 폐석분의 활용방안)

  • Song, Hun;Shin, Hyeon-Uk;Chu, Yong-Sik;Lee, Jong-Kyu;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.209-210
    • /
    • 2012
  • Cement is an essential material for social infrastructure. Cement production process for cement itself is energy-intensive and requires a large amount of natural resources for fuel and raw materials. This study is to development of recycled cement from waste concrete powder in manufacturing process of recycled aggregate concrete. Recycled cement is low carbon and green growth materials concept for eco friendly construction environment. From the test results, waste concrete powder is same chemical proportion regardless of manufacturing process of recycled aggregate concrete.

  • PDF

Physical and Mechanical Properties of Polymer Concrete Using Coal Mine Waste (석탄폐석을 이용한 폴리머 콘크리트의 물리.역학적 특성)

  • 연규석;김기성;장태연;정경현;주명기;최동순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.57-64
    • /
    • 1996
  • Lately, rapid expansion of construction industry and following increment of demand for concrete in the construction created shortage of aggregates in the nation. Supplement of good quality aggregate is an immediate issue for the construction industry to solve. Therefore, this study evaluated a possibility of using coal mine waste collceted from Kwangwon-do region as a source of aggregate in manufacturing polymer concretes which have high strength and high durability. First, aggregates were obtained by crushing coal mine waste and polymer concrete was manufactured using these aggregate. Mechanical property test results for the polymer concrete showed that the coal mine waste aggregates were acceptable to use as a replacement of the aggregate in polymer concrete manufacture.

  • PDF

A review on the effect of marble waste on properties of green concrete

  • Rachid Djebien;Amel Bouabaz;Yassine Abbas;Yasser N. Ziada
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • All production and consumption activities produce wastes, which often cause damage to our environment and multiple risks to the human health. The valorization of these wastes in concrete technology is a future solution that will allow finding other construction materials sources, optimizing energy consumption and protecting the environment. Among these wastes, there is the marble waste. Every year, huge amount of marble waste is discarded as dust or aggregates form, in open-air storage areas causing serious problems for the environment and public health. In this context, the incorporation of marble waste as a replacement of ordinary aggregates or cement in concrete composition is actively investigated by researchers. This paper presents a comprehensive review of published studies over the last 20 years, dealing the effect of marble waste on fresh and hardened properties of concrete. Most of the studies carried out have used marble waste as dust with substitution rates between 5 and 20%. Besides the economic and ecological benefits, this review showed that marble waste can improve the physical, mechanical and durability properties of concrete. This improvement depends on the form (dust, fine aggregate or coarse aggregate), substitution method (as cement or aggregates replacement) and substitution rate of marble waste. Additionally, the review results showed that the use of 10-15% of marble waste dust as cement substitution can lead to increase the compressive strength.

Analysis for the Distribution of the Heat Generated on a Nanji Waste Landfill in Using Landsat TM Image (LANDSAT TM 영상에 의한 난지도 매립지의 발생열 분포해석)

  • Yang, I.T.;Kim, M.D.;Yun, B.H.;Kim, Y.J.
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.59-70
    • /
    • 1995
  • The solution-state of a reclaimed waste would be known to the method in using an analysis for seepage. But it is not the best method in the huge landfill reclaimed all kinds of the waste at random. Especially in case of the landfill called the Nan Gi-do located along the Han-river, it is difficult to judge the generative seepage to be flowed in to the Han-river. So to plan the effective stabilization on a landfill, it is very useful survey method using the Landsat TM image. Operating a heat-distribution analysis with the Landsat TM image, in case of a landfill not having definite data, we would assume the reclaimed sections of the waste to judge a solution-speed late comparatively such as a industry waste or a harmful waste through the heat change.

  • PDF

Fundamental Properties of Cement Mortar with Waste Concrete Sludge (폐콘크리트 슬러지를 혼합 사용한 시멘트 모르터의 기초 특성)

  • Lee, Myeong-Jin;Lee, Ha-Na;Yu, Jae-Seong;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.160-161
    • /
    • 2015
  • This research reviewed the characteristics of waste concrete sludge occurred from recycled aggregate producing process and the physical and mechanical properties of the mortar incorporated the pulverized the waste concrete sludge. From the results of the experiment, as the replacement ratio of waste concrete sludge powder was increased, the dosage of superplasticizer to satisfy the target flow of 200 ± 10 was increased, and the compressive and flexural strengths were decreased. On the other hand, when the sludge powder replacement ratio was 25 %, outstanding performance of general characteristics of mortar was obtained while it was lower than Plain mixture, thus, further detail study on various replacement ratios of waste concrete sludge powder is needed.

  • PDF