• Title/Summary/Keyword: Construction Sites Monitoring

Search Result 194, Processing Time 0.025 seconds

Information Requirements for Model-based Monitoring of Construction via Emerging Big Visual Data and BIM

  • Han, Kevin K.;Golparvar-Fard, Mani
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.317-320
    • /
    • 2015
  • Documenting work-in-progress on construction sites using images captured with smartphones, point-and-shoot cameras, and Unmanned Aerial Vehicles (UAVs) has gained significant popularity among practitioners. The spatial and temporal density of these large-scale site image collections and the availability of 4D Building Information Models (BIM) provide a unique opportunity to develop BIM-driven visual analytics that can quickly and easily detect and visualize construction progress deviations. Building on these emerging sources of information this paper presents a pipeline for model-driven visual analytics of construction progress. It particularly focuses on the following key steps: 1) capturing, transferring, and storing images; 2) BIM-driven analytics to identify performance deviations, and 3) visualizations that enable root-cause assessments on performance deviations. The information requirements, and the challenges and opportunities for improvements in data collection, plan preparations, progress deviation analysis particularly under limited visibility, and transforming identified deviations into performance metrics to enable root-cause assessments are discussed using several real world case studies.

  • PDF

Analysis of Prerequisites for Using Surveillance Drones and Water Fog Spraying Drones for Fine Dust Reduction in Smart Construction (스마트건설에서 미세먼지 저감을 위한 감시드론 및 Water Fog 분사 드론을 활용하기 위한 사전 요건 분석)

  • Kim, Young Hyun;Han, Jaegoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.249-250
    • /
    • 2021
  • The use of smart equipment such as drones is increasing in construction sites. In particular, there are frequent cases where two or more drones must be used at the same time. This leads to different considerations than when operating a single unit. This study aims to analyze the requirements to be considered in the case of the operation of drones that monitor fine dust and drones that reduce fine dust in order to reduce fine dust generated in construction sites.

  • PDF

Application of Wireless Measurement System for Safety Management of Temporary Substructures (가설공사 안전관리를 위한 무선계측 시스템 적용)

  • In, Chi-Hun;Rhim, Hong-Chul;Lee, Kun-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.21-24
    • /
    • 2009
  • This study deals with the application of USN wireless inclinometer sensor for earth retaining structure safety measurement, The application of wireless inclinometer sensor has great advantage about real-time monitoring of earth retaining structure, It allows a construction manager to monitor movement data from anywhere connected through internet during the process of excavation for substructures of buildings, To validate the applicability of the wireless inclinometer sensor. laboratory and field tests have been performed, The results have shown that the measured values of wireless inclinometer sensor represent the behavior of H-pile well, Both convenience of sensor installation and real-time monitoring of earth retaining structure are confirmed, The proposed wireless measurement system provides a good basis for exact measurement of temporary substructures, More measurements and application are expected for the other excavation sites with various conditions.

  • PDF

Advance Crane Lifting Safety through Real-time Crane Motion Monitoring and Visualization

  • Fang, Yihai;Cho, Yong K.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.321-323
    • /
    • 2015
  • Monitoring crane motion in real time is the first step to identifying and mitigating crane-related hazards on construction sites. However, no accurate and reliable crane motion capturing technique is available to serve this purpose. The objective of this research is to explore a method for real-time crane motion capturing and investigate an approach for assisting hazard detection. To achieve this goal, this research employed various techniques including: 1) a sensor-based method that accurately, reliably, and comprehensively captures crane motions in real-time; 2) computationally efficient algorithms for fusing and processing sensing data (e.g., distance, angle, acceleration) from different types of sensors; 3) an approach that integrates crane motion data with known as-is environment data to detect hazards associated with lifting tasks; and 4) a strategy that effectively presents crane operator with crane motion information and warn them with potential hazards. A prototype system was developed and tested on a real crane in a field environment. The results show that the system is able to continuously and accurately monitor crane motion in real-time.

  • PDF

Performance indicator of the atmospheric corrosion monitor and concrete corrosion sensors in Kuwait field research station

  • Husain, A.;Al-Bahar, Suad Kh.;Salam, Safaa A. Abdul
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.981-994
    • /
    • 2016
  • Two field research stations based upon atmospheric corrosivity monitoring combined with reinforced concrete corrosion rate sensors have been established in Kuwait. This was established for the purpose of remote monitoring of building materials performance for concrete under Kuwait atmospheric environment. The two field research sites for concrete have been based upon an outcome from a research investigation intended for monitoring the atmospheric corrosivity from weathering station distributed in eight areas, and in different regions in Kuwait. Data on corrosivity measurements are essential for the development of specification of an optimized corrosion resistance system for reinforced concrete manufactured products. This study aims to optimize, characterize, and utilize long-term concrete structural health monitoring through on line corrosion measurement and to determine the feasibility and viability of the integrated anode ladder corrosion sensors embedded in concrete. The atmospheric corrosivity categories supported with GSM remote data acquisition system from eight corrosion monitoring stations at different regions in Kuwait are being classified according to standard ISO 9223. The two nominated field sites where based upon time of wetness and bimetallic corrosion rate from atmospheric data where metals and rebar's concrete are likely to be used. Eight concrete blocks with embeddable anodic ladder corrosion sensors were placed in the atmospheric zone adjacent to the sea shore at KISR site. The anodic ladder corrosion rate sensors for concrete were installed to provide an early warning system on prediction of the corrosion propagation and on developing new insights on the long-term durability performance and repair of concrete structures to lower labor cost. The results show the atmospheric corrosivity data of the environment and the feasibility of data retrieval of the corrosion potential of concrete from the embeddable sets of anodic ladder corrosion sensors.

In-Situ Behaviors of Steel Frame-type Retaining Walls (조립식 강재틀 옹벽의 현장적응성 분석)

  • 박종배;임해식;박용부;나승민;정형식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.93-101
    • /
    • 2003
  • Steel frame-type retaining walls(SFRW) are constructed by on site bolting of prefabricated steel frames and internal filling of materials such as rocks with the size of 150-300mm. Easy & fast construction, superior drainage performance and structural performance to rigorous site conditions are some of the merits of applying the SFRW to various construction sites. After the development of the structural details, a test construction of SFRW, with the height of 6m and 30m in length, was carried out at an apartment site. After completion, several months of monitoring was carried out on the structure to check displacement, tilting, settlement, soil pressures and drainage characteristics. The results of the structural behavior of SFRW along with its construction methods are presented in the paper.

  • PDF

In-construction vibration monitoring of a super-tall structure using a long-range wireless sensing system

  • Ni, Y.Q.;Li, B.;Lam, K.H.;Zhu, D.P.;Wang, Y.;Lynch, J.P.;Law, K.H.
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.83-102
    • /
    • 2011
  • As a testbed for various structural health monitoring (SHM) technologies, a super-tall structure - the 610 m-tall Guangzhou Television and Sightseeing Tower (GTST) in southern China - is currently under construction. This study aims to explore state-of-the-art wireless sensing technologies for monitoring the ambient vibration of such a super-tall structure during construction. The very nature of wireless sensing frees the system from the need for extensive cabling and renders the system suitable for use on construction sites where conditions continuously change. On the other hand, unique technical hurdles exist when deploying wireless sensors in real-life structural monitoring applications. For example, the low-frequency and low-amplitude ambient vibration of the GTST poses significant challenges to sensor signal conditioning and digitization. Reliable wireless transmission over long distances is another technical challenge when utilized in such a super-tall structure. In this study, wireless sensing measurements are conducted at multiple heights of the GTST tower. Data transmission between a wireless sensing device installed at the upper levels of the tower and a base station located at the ground level (a distance that exceeds 443 m) is implemented. To verify the quality of the wireless measurements, the wireless data is compared with data collected by a conventional cable-based monitoring system. This preliminary study demonstrates that wireless sensing technologies have the capability of monitoring the low-amplitude and low-frequency ambient vibration of a super-tall and slender structure like the GTST.

Case Study on the Use of CCTV for Realtime Monitoring and Recommended Improvements (상시계측시스템 모니터링을 위한 CCTV 활용사례 및 개선방안 연구)

  • Bae, Sang-Woo;Lee, Jong-Hyun;Kim, Seung-Hyun;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.417-425
    • /
    • 2012
  • CCTV cameras are used for surveillance and purposes of security, and can also be applied for monitoring infrastructure and equipment. In the Cut Slope Management System managed by KICT (Korea Institute of Construction Technology), cut slopes are continuously monitored using a real-time system, with CCTV cameras installed at 119 sites to detect slope activity. Here we compare CCTV images with displacement at three sites and perform a quantitative analysis. Methods for improving CCTV camera management and systems are also discussed with regard to communication, obstacles, and nighttime management.

Development of Construction Site Monitoring System Using UAV Data for Civil Engineering Project (UAV를 활용한 토목공사 현장 모니터링 시스템 개발에 관한 연구)

  • Jeong, Juseok;Han, Seonju;Kang, Leenseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.5
    • /
    • pp.41-49
    • /
    • 2017
  • The ordering organizations of civil engineering project manage the construction site indirectly because the construction site is mostly located at a remote location and the public official also manages many sites. Since the civil engineering project has a wide working area, it is not easy to know the status of the whole project quickly by the indirect management method by report of the field practitioner. In order to solve these problems, the field management system between the ordering organization and the field office is changing from offline to online. This study suggests an advanced construction site management system that obtains site-related 3D information with the use of UAV and shares the information between the construction site in remote locations and their supervising authorities. To develop an UAV application system, the problems of field management in many actual sites were analyzed and derived necessary functions such as status reporting and online information management. The developed system was applied to actual field to verify its usability and compared the efficiency improvement with existing field management method.