• Title/Summary/Keyword: Construction Design

Search Result 11,568, Processing Time 0.042 seconds

Effect of Summer Sea Level Rise on Storm Surge Analysis (하계 해수면 상승이 폭풍해일고 분석에 미치는 영향)

  • Kim, A Jeong;Lee, Myeong Hee;Suh, Seung Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.298-307
    • /
    • 2021
  • Typhoons occur intensively between July and October, and the sea level is the highest during this time. In particular, the mean sea level in summer in Korea is higher than the annual mean sea level about 14.5cm in the west coast, 9.0 to 14.5cm in the south coast, and about 9.0 cm in the east coast. When the rising the sea level and a large typhoon overlap in summer, it can cause surges and flooding in low-lying coastal areas. Therefore, accurate calculation of the surge height is essential when designing coastal structures and assessing stability in order to reduce coastal hazards on the lowlands. In this study, the typhoon surge heights considering the summer mean sea level rise (SH_m) was calculated, and the validity of the analysis of abnormal phenomena was reviewed by comparing it with the existing surge height considering the annual mean sea level (SH_a). As a result of the re-analyzed study of typhoon surge heights for BOLAVEN (SANBA), which influenced in August and September during the summer sea level rise periods, yielded the differences of surge heights (cm) between SH_a and SH_m 7.8~24.5 (23.6~34.5) for the directly affected zone of south-west (south-east) coasts, while for the indirect southeast (south-west) coasts showed -1.0~0.0 (8.3~12.2), respectively. Whilst the differences between SH_a and SH_m of typhoons CHABA (KONG-REY) occurred in October showed remarkably lessened values as 5.2~ 14.2 (19.8~21.6) for the directly affected south-east coasts and 3.2~6.3 (-3.2~3.7) for the indirectly influenced west coast, respectively. The results show the SH_a does not take into account the increased summer mean sea level, so it is evaluated that it is overestimated compared to the surge height that occurs during an actual typhoon. Therefore, it is judged that it is necessary to re-discuss the feasibility of the surge height standard design based on the existing annual mean sea level, along with the accurate establishment of the concept of surge height.

A Study on the Original Landscape for the Restoration and Maintenance of Buyongjeong and Juhamnu Areas in Changdeokgung Palace (창덕궁 부용정과 주합루 권역의 복원정비를 위한 원형 경관 고찰)

  • Oh, Jun-Young;Yang, Ki-Cheol
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.24-37
    • /
    • 2021
  • This study was conducted to newly examine the original landscape of Buyongjeong(芙蓉亭) and Juhamnu(宙合樓) areas in Changdeokgung Palace(昌德宮), focusing on the modern period including the Korean Empire, and to derive useful research results for restoration and maintenance in the future. The study results can be summarized as follows. First, the artificial island in Buyongji(芙蓉池) was originally made up of a straight layer using well-trimmed processed stone. However, during the maintenance work in the 1960s and 1970s, the artificial island in Buyongji was transformed into a mixture of natural and processed stones. The handrail installed on the upper part of the artificial island in Buyongji is a unique facility that is hard to find similar cases. The handrail existed even during the Korean Empire, but was completely destroyed during the Japanese colonial period. Second, Chwibyeong(翠屛), which is currently located on the left and right of Eosumun(魚水門), is the result of a reproduction based on Northern bamboo in 2008. Although there is a view that sees the plant material of Eosumun Chwibyeong as Rigid-branch yew, the specific species is still vague. Looking at the related data and circumstances from various angles, at least in the modern era, it is highly probable that the Eosumun Chwibyeong was made of Chinese juniper like Donggwanwangmyo Shrine(東關王廟) and Guncheongung(乾淸宮) in Gyeongbokgung Palace(景福宮). Third, the backyard of Juhamnu was a space with no dense trees on top of a stone staircase-shaped structure. The stone stairway in the backyard of Juhamnu was maintained in a relatively open form, and it also functioned as a space to pass through the surrounding buildings. However, as large-scale planting work was carried out in the late 1980s, the backyard of Juhamnu was maintained in the same shape as a Terraced Flower Bed, and it was transformed into a closed space where many flowering plants were planted. Fourth, Yeonghwadang Namhaenggak(暎花堂 南行閣), which had a library function like Gyujanggak(奎章閣) and Gaeyuwa(皆有窩), was destroyed in the late 1900s and was difficult to understand in its original form. Based on modern photographs and sketch materials, this study confirmed the arrangement axis of Yeonghwadang Namhaenggak, and confirmed the shape and design features of the building. In addition, an estimated restoration map referring to 「Donggwoldo(東闕圖)」 and 「Donggwoldohyung(東闕圓形)」 was presented for the construction of basic data.

The Actual State and Transformation of Major Garden Ornaments in Changdeokgung Palace during the Modern and Contemporary Period (근현대기 창덕궁 내 주요 점경물의 실상과 변형)

  • Oh, Jun-Young;Lee, Jae-Yong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.1
    • /
    • pp.10-19
    • /
    • 2021
  • This study investigated the actual state and transformation of the major garden ornaments in Changdeokgung Palace(昌德宮) in the modern and contemporary period, focusing on Nakseonjae(樂善齋), Juhamnu(宙合樓), Jondeokjeong(尊德亭), and Daebodanji (大報壇址). This study can be used as useful data for establishing the restoration and maintenance plan of the garden ornaments in Changdeokgung Palace, and the main results of the study can be summarized as follows. First, according to a photo taken by the Czech Vráz, in 1901, a total of six garden ornaments, including a stone pond and odd-shaped stones, were located in the backyard of Nakseonjae. Since liberation, arbitrary relocation of garden ornaments has frequently occurred, and in the process, two odd-shaped stones, originally located on the first floor of the terraced flower bed, have been transferred to the backyard of Gyeonghungak(景薰閣). Second, unlike the late Joseon Dynasty when 「Donggwoldo(東闕圖)」 was produced, odd-shaped stones were arranged symmetrically in the backyard of Juhamnu in the early 1900s. It was a traditional style garden ornament with similar appearance, size, and design. However, all the odd-shaped stones in the backyard of Juhaumnu were relocated to other places in the 1970s and 1980s. One is located at the rear of Aeryeonjeong(愛蓮亭) through the entrance of Bingcheon(氷泉) and the vicinity of Geumcheongyo(錦川橋), and the other remains in front of the Yeongyeongdang Jangnakmun(演慶堂 長樂門). Third, among the garden ornaments located in the area of Jondeokjeong in the past, one odd-shaped stone is now relocated around the stone bridge near the pavilion and the Yeonghwadang(暎花堂) with its components separated. The bondstone near Yeonghwadang was relocated in 1990 for the purpose of installing an imitation of Angbuilgu(仰釜日晷). Another odd-shaped stone has been relocated to the front door of the Secret Garden(後苑), and now it is difficult to grasp the location. Fourth, the two bondstones remaining in the Daebodanji were actually building materials that were used as the foundation stone for the entrance pillars of the Yi Royal Office Building(李王職廳舍) during the Japanese colonial period. After liberation, the Yi Royal Office Building was reorganized into Imperial Estate Administration Office(皇室財産事務總局), and when the office building was burned down in 1960, the stone statues and foundation stones placed on the stylobate were relocated to the Daebodanji. The bondstone at Daebodanji is a representative example of construction materiasl being mistaken for gaeden ornaments.

A study on the effect of ground conditions of room and pillar method on pillar and room strain (격자형 지하공간의 지반조건이 암주와 룸 변형률에 미치는 영향에 대한 연구)

  • Ham, Hyeon Su;Kim, Yong Kyu;Park, Chi Myeon;Lee, Chul Ho;Kim, YoungSeok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.577-587
    • /
    • 2021
  • Room and Pillar method is an underground facility construction method that maximizes the strength of the in-situ ground. In order to secure the safety of the underground space, it is necessary to secure the safety of the room actually used in addition to the safety of pillar of the room and Pillar method. In this study, the evaluation method for the safety of the room and rock pillar in the room and pillar method was studied through numerical analysis. Numerical analysis was performed for a total of 125 cases using ground conditions, pillar width, and room width as parameters, and the results were derived. As for the safety factor of the pillar, it was confirmed that the safety factor increased when the strength of the ground increased, and it was confirmed that the increment in the safety factor decreased when the width of the pillar was widened. The room strain was evaluated by applying the Critical strain. As the width of the pillar became narrower, the Critical strain was higher, and as the width of the room became smaller, the Critical strain was smaller. As a result of the correlation analysis between the safety factor of the pillar and the room strain, it was possible to derive the upper limit of the room strain that can secure the standard safety factor of the pillar according to the width of the pillar. It is judged that the results derived from this study can be used as a guideline to secure the safety of the room when the actual design is performed in consideration of the ground conditions and room width.

Deep Learning OCR based document processing platform and its application in financial domain (금융 특화 딥러닝 광학문자인식 기반 문서 처리 플랫폼 구축 및 금융권 내 활용)

  • Dongyoung Kim;Doohyung Kim;Myungsung Kwak;Hyunsoo Son;Dongwon Sohn;Mingi Lim;Yeji Shin;Hyeonjung Lee;Chandong Park;Mihyang Kim;Dongwon Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.143-174
    • /
    • 2023
  • With the development of deep learning technologies, Artificial Intelligence powered Optical Character Recognition (AI-OCR) has evolved to read multiple languages from various forms of images accurately. For the financial industry, where a large number of diverse documents are processed through manpower, the potential for using AI-OCR is great. In this study, we present a configuration and a design of an AI-OCR modality for use in the financial industry and discuss the platform construction with application cases. Since the use of financial domain data is prohibited under the Personal Information Protection Act, we developed a deep learning-based data generation approach and used it to train the AI-OCR models. The AI-OCR models are trained for image preprocessing, text recognition, and language processing and are configured as a microservice architected platform to process a broad variety of documents. We have demonstrated the AI-OCR platform by applying it to financial domain tasks of document sorting, document verification, and typing assistance The demonstrations confirm the increasing work efficiency and conveniences.

Review for Mechanisms of Gas Generation and Properties of Gas Migration in SNF (Spent Nuclear Fuel) Repository Site (사용 후 핵연료 처분장 내 가스의 발생 기작 및 거동 특성 고찰)

  • Danu Kim;Soyoung Jeon;Seon-ok Kim;Sookyun Wang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.167-183
    • /
    • 2023
  • Gases originated from the final SNF (spent nuclear fuel) disposal site are very mobile in the barrier and they may also affect the migration of radioactive nuclides generated from the SNF. Mechanisms of gas-nuclide migration in the multi-barrier and their influences on the safety of the disposal site should be understood before the construction of the final SNF disposal site. However, researches related to gas-nuclide coupled movement in the multi-barrier medium have been very little both at home and abroad. In this study, properties of gas generation and migration in the SNF disposal environment were reviewed through previous researches and their main mechanisms were summarized on the hydrogeological evolution stage of the SNF disposal site. Gas generation in the SNF disposal site was categorized into five origins such as the continuous nuclear fission of the SNS, the Cu-canister corrosion, the oxidation-reduction reaction, the microbial activity, and the inflow from the natural barriers. Migration scenarios of gas in porous medium of the multi-barrier in the SNF repository site were investigated through reviews for previous studies and several gas migration types including ① the free gas phase flow including visco-capillary two-phase flow, ② the advection and diffusion of dissolved gas in pore water, ③ dilatant two-phase flow, and ④ tensile fracture flow, were presented. Reviewed results in this study can support information to design the further research for the gas-nuclide migration in the repository site and to evaluate the safety of the Korean SNF disposal site in view points of gas migration in the multi-barrier.

Principles of Stone Elevation Formation for Walls and Wells in the Silla Dynasty from 5th to 7th Centuries (5~7세기 신라시대 성곽과 우물에 대한 석축입면조형원리)

  • Kang, Seong-Bin;Seo, Seong-Hyeok;Jung, Tae-Yeol
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.47-55
    • /
    • 2023
  • In this study, the following conclusions were drawn by analyzing the size, proportion, shape, angle, distribution, etc. of stones in order to identify the principles of facade molding of stonework of the 5th to 7th centuries of the Silla Dynasty. First, the uniformity of the size of the stones of the stone foundations of the Silla Dynasty was low at -0.8 to 4.1. This means that stones of various sizes were used, from small stones to large stones. In addition, the distribution of large stones in stonework of the Silla Dynasty appeared evenly regardless of height. This was common in the stonework of the Silla Dynasty, regardless of structural classification such as wells and mountain fortresses. It is thought that the Silla people did not only pursue practicality and efficiency in stone construction, but also considered design elements. Second, the proportional deviation of the stones of the stone walls of the Silla Dynasty was high, ranging from 0.861 to 1.515. This means that the stonework of the Silla Dynasty did not use only long flagstone-shaped stones, but used a mixture of long and short stones. Third, the shape average of the stones of the stonework of the Silla Dynasty was low at 0.45, and the shape deviation was high at the maximum of 0.15. This means that the stones as a whole have irregular shapes, and each stone has a high difference in shape. Fourth, the angle deviation of the stones of the Silla Dynasty was 4.3 to 16.2, and the average angle was 2. This means that the angle of each stone on the stone axis of the Silla Dynasty is tilted to the left and right. Fifth, there was no correlation between stone size, slenderness ratio, shape, and angle in the stone axes of the Silla Dynasty. In the case of stone axes in the Joseon Dynasty, there was a positive correlation between stone size and slenderness, and a negative correlation between stone size and shape. It can be said that the stones of the Joseon Dynasty were relatively standardized, but the Silla Dynasty showed the beauty of moderation by keeping the nature of the material and becoming one with the material.

Introduction of the Best Practices in the Pakistan Gulpur HEPP (파키스탄 Gulpur 수력발전 현장의 Best Practices 소개)

  • JANG, Ock Jae;HONG, Won Pyo;CHAE, Hee Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.216-217
    • /
    • 2022
  • Gulpur 수력발전 프로젝트는 전력난을 겪고 있는 파키스탄에 102 MW 규모의 수력발전소를 건설하여 30년 동안 운영 관리한 후 파키스탄 정부로 양도하는 IPP(Independent Power Producing) 형식의 투자사업이다. 남동발전과 DL E&C, 롯데건설이 Sponsor로서 출자한 자본금과, ADB, IFC, K-EXIM 등의 대주단로부터의 차입금을 재원으로 하여 소요 사업비를 조달하고 사업을 개발하였다. DL E&C와 롯데건설이 EPC(Engineering, Procurement, Construction)를 수행하였고, 이산이 Design consultant의 역할을 수행하였다. Gulpur 수력발전 프로젝트의 발전형식은 수로식(run-of-river)으로 201 m3/s의 발전유량과 102 MW의 발전 시설용량을 이용하여 연평균예상발전량은 398 GWh이다. 주요 구조물로는 설계 재현빈도 1년의 유수전환시설(가물막이댐 & 가배수터널)과 콘크리트 중력식댐(H 67 m, L 205 m), 도수터널(D 6.7 m, L 215 m, 2기), 옥외형 발전소 (H 51 m, W 60 m, L 38 m, Kaplan 2기)가 있으며, 2015년 10월 착공하여 2020년 3월 상업발전을 시작하였다. 본 프로젝트는 DL E&C의 첫 번째 EPC 해외수력발전 프로젝트이다. 따라서 프로젝트의 성공적 수행을 위한 경제적 설계, 시공의 효율성 및 안정성 확보 등을 위하여 많은 연구를 수행하는 과정에서 다양한 기술 개선을 이룰 수 있었다. 본고에서는 Gulpur 프로젝트를 통하여 도출된 성공 사례들을 소개 및 공유하고자 한다. 첫 번째로 콘크리트 중력식댐 시공을 위한 유수전환시설의 최적 설계빈도를 산정하였다. 일반적으로 유수전환시설의 규모는 설계기준에 제시된 설계 재현빈도를 이용하는데, 해외 설계기준에서는 10년, 국내 설계기준에서는 1~2년으로 다르게 제시되어 있는 문제점이 있다. 유수전환시설의 규모는 프로젝트의 경제성에 큰 영향을 미치기 때문에 최적 설계빈도의 결정이 필요하며, 위험도분석기법(Risk Analysis)과 기대화폐가치법(Expected Monetary Value)을 이용하여 유수전환시설의 최적 설계 재현빈도와 이에 영향을 미치는 인자를 분석하였다. 위험도는 몬테카를로 시뮬레이션으로 산정된 가물막이댐 파괴확률과 재현빈도를 이용하여 산정된 가물막이댐 월류확률을 고려하였으며, 비용 및 피해액으로는 유수전환시설의 공사비, 가물막이댐 파괴시의 재건설비용과 지체보상금, 가물막이댐 월류시의 복구비용을 고려하였다. 이에 대한 연구결과로, 유수전환시설의 사용기간과 월류시의 복구비용이 유수전환시설의 설계 재현기간 결정에 가장 큰 영향을 미치는 것으로 나타났고, 특히 월류시의 복구비용이 작을수록 낮은 설계 재현빈도를 선택하는 것이 타당한 것으로 나타났다. 예를 들어, 유수전환시설의 사용기간이 3 ~ 5년, 복구비용이 0.5 ~ 1.0 mil USD 이하인 조건에서 가물막이시설의 최적 설계빈도는 1년 ~ 2년인 것으로 나타났다. 또한, 유수전환시설의 사용기간은 본댐의 규모와 시공기간 등을 고려하여 결정되는 사항으로 설계자가 임의 조정할 수 없지만, 복구비용은 시공 관리자에 따라 결정되는 부분으로, 적극적 홍수 피해 저감 및 복구방안을 마련하는 것이 프로젝트의 경제성을 향상시킬 수 있다는 것을 알 수 있었다. 두 번째로 프로젝트의 경제성 향상, 홍수기 댐 시공시의 안전성 확보를 위하여 홍수 조기경보시스템(Early Warning System)을 개발 및 활용하였다. 수로식(Run-of-river) 수력발전댐은 대부분 산악지역에 위치하기 때문에 국지성 강우 및 급한 지형 경사로 인하여 돌발홍수(flash flood)의 발생 가능성이 높다. 따라서 시공 중 홍수(월류) 발생을 미리 감지하고 현장에 전파할 수 있는, 수로식(Run-of-river) 수력발전댐 현장을 위한 홍수 조기경보시스템이 필요하며, 이를 리스크 인식, 모니터링 및 경보, 전파 및 연락, 반응 능력 향상의 4가지 부분으로 나누어 구축하였다. 리스크 인식 부분에서는 가물막이댐 월류 발생 상황에 대한 위험도, 취약성, 리스크를 제시하였으며, 모니터링 및 경보 부분에서는 상류 측정수위에서 유도된 현장 예상수위와 실제 현장 측정 수위를 대상으로 경보홍수위와 위험홍수위로 나누어 관리하였다. 전파 및 연락 부분에서는 현장 시공 조직을 활용하여 홍수시를 대비한 비상연락체계도(Emergency communication flow chart)를 운영하였으며, 반응 능력 향상을 위해 비상연락체계도의 팀별 Action plan을 상세화 하였다. 세 번째로 현장의 지질특성과 50여 차례 발파시험으로 현장 고유의 발파진동감쇄곡선을 도출하였으며, 이를 통해 현장의 시공성과 콘크리트 품질 확보를 동시에 달성할 수 있는 방안을 제시하였다. 콘크리트댐 공사에서는 제한된 공기 내에 공사를 완료하기 위해 사면부 굴착과 콘크리트 타설이 동시에 수행될 수밖에 없는 문제점을 가지고 있다. 그러나 신규 콘크리트 타설면 근처에서 발파를 수행하는 경우 발파로 발생되는 탄성파가 일정 수준을 초과하게 되면, 콘크리트 양생에 영향을 주게 된다. 따라서 다수의 현장 발파시험을 통해 발파거리와 최대진동속도의 상관관계 즉, 발파진동감쇄곡선을 도출함으로써 현장의 발파진동특성을 도출할 수 있었다. 또한, 기존 연구 논문들을 통해 콘크리트 재령기간 별 안전진동속도를 선정하고, 해당 안전진동속도를 초과하지 않는 범위에서 콘크리트 타설면과 발파위치의 거리에 따라 1회 발파 가능한 장약량을 산정하여 적용하였다. 이와 같은 체계적인 접근을 통해 콘크리트 타설과 발파 작업 동시 수행에 대한 논란을 해소할 수 있었다.

  • PDF

Behavior of Hollow Box Girder Using Unbonded Compressive Pre-stressing (비부착 압축 프리스트레싱을 도입한 중공박스 거더의 거동)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Kim, Tae Kyun;Eoh, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.201-209
    • /
    • 2010
  • Generally, PSC girder bridge uses total gross cross section to resist applied loads unlike reinforced concrete member. Also, it is used as short and middle span (less than 30 m) bridges due to advantages such as ease of design and construction, reduction of cost, and convenience of maintenance. But, due to recent increased public interests for environmental friendly and appearance appealing bridges all over the world, the demands for longer span bridges have been continuously increasing. This trend is shown not only in ordinary long span bridge types such as cable supported bridges but also in PSC girder bridges. In order to meet the increasing demands for new type of long span bridges, PSC hollow box girder with H-type steel as compression reinforcements is developed for bridge with a single span of more than 50 m. The developed PSC girder applies compressive prestressing at H-type compression reinforcements using unbonded PS tendon. The purpose of compressive prestressing is to recover plastic displacement of PSC girder after long term service by releasing the prestressing. The static test composed of 4 different stages in 3-point bending test is performed to verify safety of the bridge. First stage loading is applied until tensile cracks form. Then in second stage, the load is removed and the girder is unloaded. In third stage, after removal of loading, recovery of remaining plastic deformation is verified as the compressive prestressing is removed at H-type reinforcements. Then, in fourth stage, loading is continued until the girder fails. The experimental results showed that the first crack occurs at 1,615 kN with a corresponding displacement of 187.0 mm. The introduction of the additional compressive stress in the lower part of the girder from the removal of unbonded compressive prestressing of the H-type steel showed a capacity improvement of about 60% (7.7 mm) recovery of the residual deformation (18.7 mm) that occurred from load increase. By using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and rehabilitation of PSC girders are relatively easy, and the cost of maintenance is expected to decrease.

Development and assessment of pre-release discharge technology for response to flood on deteriorated reservoirs dealing with abnormal weather events (이상기후대비 노후저수지 홍수 대응을 위한 사전방류 기술개발 및 평가)

  • Moon, Soojin;Jeong, Changsam;Choi, Byounghan;Kim, Seungwook;Jang, Daewon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.775-784
    • /
    • 2023
  • With the increasing trend of extreme rainfall that exceeds the design frequency of man-made structures due to extreme weather, it is necessary to review the safety of agricultural reservoirs designed in the past. However, there are no local government-managed reservoirs (13,685) that can be discharged in an emergency, except for reservoirs over a certain size under the jurisdiction of the Korea Rural Affairs Corporation. In this case, it is important to quickly deploy a mobile siphon to the site for preliminary discharge, and this study evaluated the applicability of a mobile siphon with a diameter of 200 mm, a minimum water level difference of 6 m, 420 (m2/h), and 10,000 (m2/day), which can perform both preliminary and emergency discharge functions, to the Yugum Reservoir in Gyeongju City. The test bed, Yugum Reservoir, is a facility that was completed in 1945 and has been in use for about 78 years. According to the hydrological stability analysis, the lowest height of the current dam crest section is 27.15 (EL.m), which is 0.29m lower than the reviewed flood level of 27.44 (EL.m), indicating that there is a possibility of lunar flow through the embankment, and the headroom is insufficient by 1.72 m, so it was reviewed as not securing hydrological safety. The water level-volume curve was arbitrarily derived because it was difficult to clearly establish the water level-flow relationship curve of the reservoir since the water level-flow measurement was not carried out regularly, and based on the derived curve, the algorithm for operating small and medium-sized old reservoirs was developed to consider the pre-discharge time, the amount of spillway discharge, and to predict the reservoir lunar flow time according to the flood volume by frequency, thereby securing evacuation time in advance and reducing the risk of collapse. Based on one row of 200 mm diameter mobile siphons, the optimal pre-discharge time to secure evacuation time (about 1 hour) while maintaining 80% of the upper limit water level (about 30,000 m2) during a 30-year flood was analyzed to be 12 hours earlier. If the pre-discharge technology utilizing siphons for small and medium-sized old reservoirs and the algorithm for reservoir operation are implemented in advance in case of abnormal weather and the decision-making of managers is supported, it is possible to secure the safety of residents in the risk area of reservoir collapse, resolve the anxiety of residents through the establishment of a support system for evacuating residents, and reduce risk factors by providing risk avoidance measures in the event of a reservoir risk situation.