• 제목/요약/키워드: Constraint equation

검색결과 272건 처리시간 0.031초

변형율 공간에서의 탄소성 강도 매트릭스 형성 (A Development of Elastoplastic Tangent Modulus in Finite Strain Space)

  • 주관정
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.70-74
    • /
    • 1990
  • The finite plasticity in strain space is viewed by formulating the consistency condition and the thermodynamic condition with respect to proposed state variables. The Naghi-Trapp work assumption is used to obtain a constraint equation, and the normality equation is formulated. Finally, an elastoplastic tangent modulus, which is based on the derived equations in strain space, is proposed.

  • PDF

A CELL BOUNDARY ELEMENT METHOD FOR A FLUX CONTROL PROBLEM

  • Jeon, Youngmok;Lee, Hyung-Chun
    • 대한수학회지
    • /
    • 제50권1호
    • /
    • pp.81-93
    • /
    • 2013
  • We consider a distributed optimal flux control problem: finding the potential of which gradient approximates the target vector field under an elliptic constraint. Introducing the Lagrange multiplier and a change of variables the Euler-Lagrange equation turns into a coupled equation of an elliptic equation and a reaction diffusion equation. The change of variables reduces iteration steps dramatically when the Gauss-Seidel iteration is considered as a solution method. For the elliptic equation solver we consider the Cell Boundary Element (CBE) method, which is the finite element type flux preserving methods.

Place Assimilation in OT

  • Lee, Sechang
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 1996년도 10월 학술대회지
    • /
    • pp.109-116
    • /
    • 1996
  • In this paper, I would like to explore the possibility that the nature of place assimilation can be captured in terms of the OCP within the Optimality Theory (Mccarthy & Prince 1999. 1995; Prince & Smolensky 1993). In derivational models, each assimilatory process would be expressed through a different autosegmental rule. However, what any such model misses is a clear generalization that all of those processes have the effect of avoiding a configuration in which two consonantal place nodes are adjacent across a syllable boundary, as illustrated in (1):(equation omitted) In a derivational model, it is a coincidence that across languages there are changes that have the result of modifying a structure of the form (1a) into the other structure that does not have adjacent consonantal place nodes (1b). OT allows us to express this effect through a constraint given in (2) that forbids adjacent place nodes: (2) OCP(PL): Adjacent place nodes are prohibited. At this point, then, a question arises as to how consonantal and vocalic place nodes are formally distinguished in the output for the purpose of applying the OCP(PL). Besides, the OCP(PL) would affect equally complex onsets and codas as well as coda-onset clusters in languages that have them such as English. To remedy this problem, following Mccarthy (1994), I assume that the canonical markedness constraint is a prohibition defined over no more than two segments, $\alpha$ and $\beta$: that is, $^{*}\{{\alpha, {\;}{\beta{\}$ with appropriate conditions imposed on $\alpha$ and $\beta$. I propose the OCP(PL) again in the following format (3) OCP(PL) (table omitted) $\alpha$ and $\beta$ are the target and the trigger of place assimilation, respectively. The '*' is a reminder that, in this format, constraints specify negative targets or prohibited configurations. Any structure matching the specifications is in violation of this constraint. Now, in correspondence terms, the meaning of the OCP(PL) is this: the constraint is violated if a consonantal place $\alpha$ is immediately followed by a consonantal place $\bebt$ in surface. One advantage of this format is that the OCP(PL) would also be invoked in dealing with place assimilation within complex coda (e.g., sink [si(equation omitted)k]): we can make the constraint scan the consonantal clusters only, excluding any intervening vowels. Finally, the onset clusters typically do not undergo place assimilation. I propose that the onsets be protected by certain constraint which ensures that the coda, not the onset loses the place feature.

  • PDF

A FAST AND ACCURATE NUMERICAL METHOD FOR MEDICAL IMAGE SEGMENTATION

  • Li, Yibao;Kim, Jun-Seok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권4호
    • /
    • pp.201-210
    • /
    • 2010
  • We propose a new robust and accurate method for the numerical solution of medical image segmentation. The modified Allen-Cahn equation is used to model the boundaries of the image regions. Its numerical algorithm is based on operator splitting techniques. In the first step of the splitting scheme, we implicitly solve the heat equation with the variable diffusive coefficient and a source term. Then, in the second step, using a closed-form solution for the nonlinear equation, we get an analytic solution. We overcome the time step constraint associated with most numerical implementations of geometric active contours. We demonstrate performance of the proposed image segmentation algorithm on several artificial as well as real image examples.

위상최적화를 이용한 수중음향렌즈의 설계 (Underwater Acoustic Lens Design Using Topology Optimization)

  • 장강원;;조완호;권휴상;조승현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.555-556
    • /
    • 2014
  • In this paper, topology optimization of two-dimensional acoustic lenses is presented by using the phase field method. The objective of the optimization is to maximize the acoustic pressure at a specified domain inside the acoustic domain for a given frequency, and the constraint is imposed on the amount of the material of the acoustic lens. Topology optimization of two-dimensional acoustic lenses are obtained as the steady state of the phase transition described by the Allen-Cahn equation. The Helmholtz equation modeling the wave propagation is solved by using a finite element method. The effectiveness of the proposed method is verified by applying it for several two-dimensional acoustic lens system design problems.

  • PDF

ON THE ROBUSTNESS OF CONTINUOUS TRAJECTORIES OF THE NONLINEAR CONTROL SYSTEM DESCRIBED BY AN INTEGRAL EQUATION

  • Nesir Huseyin;Anar Huseyin
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제30권2호
    • /
    • pp.191-201
    • /
    • 2023
  • In this paper the control system described by Urysohn type integral equation is studied. It is assumed that control functions are integrally constrained. The trajectory of the system is defined as multivariable continuous function which satisfies the system's equation everywhere. It is shown that the set of trajectories is Lipschitz continuous with respect to the parameter which characterizes the bound of the control resource. An upper estimation for the diameter of the set of trajectories is obtained. The robustness of the trajectories with respect to the fast consumption of the remaining control resource is discussed. It is proved that every trajectory can be approximated by the trajectory obtained by full consumption of the control resource.

다관절 핑거 로봇의 파지 운동 모델과 제어에 관한 연구 (A Study on Model and Control of Pinching Motion for Multi-Fingered Robot)

  • 엄혁;최종환;김용석;양순용;이진걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1060-1067
    • /
    • 2005
  • This paper attempts to derive and analyze the dynamic system of pinching a rigid object by means of two multi-degrees-of-freedom robot fingers with soft and deformable tips. It is shown firstly that a set of differential equation describing dynamics system of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It is shown secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this paper, the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the dynamic stable grasping of the dual fingers robot with soft tips.

  • PDF

Optimal stiffness distribution in preliminary design of tubed-system tall buildings

  • Alavi, Arsalan;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.731-739
    • /
    • 2018
  • This paper presents an optimal pattern for distributing stiffness along a framed tube structure through an analytic equation, which may be used during the preliminary design stage. Most studies in this field are computationally intensive and time consuming, while a hand-calculation method, as presented here, is a more suitable tool for sensitivity analyses and parametric studies. Approach in development of the analytic model is to minimize the mean compliance (external work) for a given volume of material. A variational statement of the problem is made, and a specified deformation-profile is obtained as the necessary condition for a minimum; enforcing this condition, stiffness is then computed. Due to some near-zero values for stiffness, the problem is modified by considering a lower bound constraint. To deal with this constraint, the design domain is assumed to be divided into two zones of constant stiffness and constant curvature; and the problem is restated in terms of these concepts. It will be shown that this methodology allows for easy computation of stiffness through an analytic and dimensionless equation, valid in any system of units. To show practicality of the proposed method, a tubed-system structure with uniform stiffness distribution is redesigned using the proposed model. Comparative analyses of the results reveal that in addition to simplicity of the proposed method, it provides a rather high degree of accuracy for real-world problems.

전압벡터의 유효분 감도지표 dP/de 수정법에 의한 견고한 전압안정도 평가에 관한 연구 (Robust algorithm for estimating voltage stability by the modified method of sensitivity index dP/de of real value on voltage vector)

  • 송길영;김세영;김용하
    • 대한전기학회논문지
    • /
    • 제45권1호
    • /
    • pp.1-8
    • /
    • 1996
  • Recently, much attention has been paid to problems which is concerned with voltage instability phenomena and much works on these phenomena have been made. In this paper, by substituting d $P_{k}$ d $e_{k}$ ( $v^{\rarw}$= e +j f) for $P_{k}$ in conventional load flow, direct method for finging the limit of voltage stability is proposed. Here, by using the fact that taylor se- ries expansion in .DELTA. $P_{k}$ and .DELTA. $Q_{k}$ is terminated at the second-order terms, constraint equation (d $P_{k}$ d $e_{k}$ =0) and power flow equations are formulated with new variables .DSLTA. e and .DELTA.f, so partial differentiations for constraint equation are precisely calculated. The fact that iteratively calculated equations are reformulated with new variables .DELTA.e and .DELTA.f means that limit of voltage stability can be traced precisely through recalculation of jacobian matrix at e+.DELTA.e and f+.DELTA.f state. Then, during iterative process divergence may be avoid. Also, as elements of Hessian mat rix are constant, its computations are required only once during iterative process. Results of application of the proposed method to sample systems are presented. (author). 13 refs., 11 figs., 4 tab.

  • PDF

점탄성 감쇠기와 설치용 가새의 최적설계 (Optimal Design of Viscoelastic Dampers and Support Braces)

  • 박지훈;이상현;강경수;황재승;김진구
    • 한국지진공학회논문집
    • /
    • 제5권3호
    • /
    • pp.45-55
    • /
    • 2001
  • 본 연구는 점탄성 감쇠기의 최적설계에 관한 연구로서 기존에 독립적으로 설계되던 점탄성 감쇠기와 설치용 가새 강성의 동시 최적설계 방법을 제시하였다. 이를 위해 직렬 연결된 점탄성 감쇠기와 가새를 상태방정식으로 모델링하였으며 최대응답계수를 이용해서 각층 최대 층간변위를 구속조건으로 하여 최적화 문제를 구성하였다. 구속조건에 대한 기울기 정보를 계산하는 과정에서 구조물의 동적거동에 관한 구속조건을 포함시켜서 문제를 재구성함으로써 변수를 줄일 수 있었다. 설계예제를 통해 현실적으로 충분한 가새 강성이 제공될 수 없는 경우에는 층간변위 구속조건을 만족시키기 위해서 가새 강성을 고려한 감쇠기 설계가 필요함을 확인할 수 있었다. 또한 가새 강성을 최적화 변수에 포함시킴으로써 불필요한 가새 강성을 줄일 수 있었으며 이를 보상하기 위한 감쇠기 물량의 상대적인 증가는 크지 않다는 것을 확인할 수 있었다.

  • PDF