• Title/Summary/Keyword: Constraint Programming Model

Search Result 98, Processing Time 0.029 seconds

A Study on Ammunition Resupply Allocation Model (전시탄약 재보급 할당에 관한 연구)

  • Lee Young-Shin
    • Journal of the military operations research society of Korea
    • /
    • v.30 no.2
    • /
    • pp.133-140
    • /
    • 2004
  • In this paper, with the limited range of ammunition supply point(ASP) at ammunition battalion in specific corps and light automobile battalion(LAB) directly supports its vehicle for ammunition supply, we propose optimal model to minimize transportation time and logistics cost using integer programming(IP) for efficient ammunition resupply allocation during a given operation period of front combat unit. And then, we consider ammunition treatment and supply capacity of ammunition supply point(ASP), constraint elements of transportation ability considering time and cost, ammunition storage capacity of combat unit, combat situation and unit mission to propose this model. Finally, through numerical example, we examine the applicable feasibility of proposed model.

PSEUDO-RELIABILITY MODEL OF COMBAT TANK SYSTEM

  • Lie, Chang-Hoon
    • Journal of the military operations research society of Korea
    • /
    • v.3 no.1
    • /
    • pp.137-150
    • /
    • 1977
  • The effectiveness of an actual combat tank system is analyzed. A measure of effectiveness which includes performance and reliability called pseudo-reliability is introduced. A model is introduced to optimize the design of the system in which the system pseudo-reliability is maximized subject to cost constraint. This model is a nonlinear programming problem and is solved by the sequential unconstrained minimization technique (SUMT). A numerical exampl with actual data from the test evaluation of five combat tanks is used to illustrate the model.

  • PDF

Integer Programming Model and Heuristic on the Guided Scrambling Encoding for Holographic Data Storage (홀로그래픽 저장장치에 대한 GS 인코딩의 정수계획법 모형 및 휴리스틱)

  • Park, Taehyung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.656-661
    • /
    • 2013
  • In Guided Scrambling (GS) encoding for the holographic storage, after scrambling augmented source word into codeword, the best codeword satisfying modulation constraint is determined. Modulation constraints considered in this paper are strength which is the minimum number of transition between '0' and '1' in each row and column of codeword array and the symbol balancedness of codeword array. In this paper, we show that GS encoding procedure can be formulated as an integer programming model and develop a fast neighborhood search heuristic for fast computation of control bits. In the simulation, we compared the performance of heuristic algorithm with the integer programming model for various array and control bit size combinations.

Sensitivity Analysis on the Priority Order of the Radiological Worker Allocation Model using Goal Programming

  • Jung, Hai-Yong;Lee, Kun-Jai
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.577-582
    • /
    • 1998
  • In nuclear power plant, it has been the important object to reduce the occupational radiation exposure (ORE). Recently, the optimization concept of management science has been studied to reduce the ORE in nuclear power plant. In optimization of the worker allocation, the collective dose, working time, individual dose, an total number of worker must be considered and their priority orders must be thought because the main constraint is necessary for determining the constraints variable of the radiological worker allocation problem. The ultimate object of this study s to look into the change of the optimal allocation of the radiological worker as priority order changes. In this study, the priority order is the characteristic of goal programming that is a kind of multi-objective linear programming. From a result of study using goal programming, the total number of worker and collective dose of worker have changed as the priority order has changed and the collective dose limit have played an important role in reducing the ORE.

  • PDF

The University Examination And Course Timetabling Problem With Integer Programming

  • Chung, Yerim;Kim, Hak-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.9-20
    • /
    • 2019
  • In this paper, we study the university timetabling problem, which consists of two subproblems, the university course timetabling problem and the examination timetabling problem. Given a set of classrooms, students, teachers, and lectures, the problem is to assign a number of courses (and examinations) to suitable timeslots and classrooms while satisfying the given set of constraints. We discuss the modeling and solution approaches to construct course and examination timetables for one of the largest Korean university. By using binary integer programming formulations, we describe these two complex real-world problems. Then, we propose a solution method, called NOGOOD, to solve the examination timetabling model. The computation results show that NOGOOD finds the optimal examination schedule for the given instance. Although we consider a specific instance of the university timetabling problem, the methods we use can be applicable to modeling and solving other timetabling problems.

Management for Company Objectives with Considerations of Optimal Production/Sales Planning (최적 생산/판매 계획을 통한 기업 목표 관리 사례)

  • Jung, Jae-Heon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.2
    • /
    • pp.77-90
    • /
    • 2009
  • Total profit level Increases if a company increase the cost for achieving R&D related goals of equipment productivity enhancement, production cost saving, or for achieving equipment scale target, sales volume goal. But how much money should be invested to achieve a certain level of profit? We formulated the model to set the optimal goal levels to minimize the investment cost under the constraint that certain level of total profit should be guaranteed. This model derived from a case of P steel company. We found that this should be considered in relation with the production sales planning (known as optimal product mix problem) to guarantee the profit. We suggested a nonlinear programming model, 3 valiant form of the p+roduct mix problem. We can find the optimal Investment level for the R&D related goals or sales volume goal, equipment scale target for the P steel company using the model.

Solving Facility Rearrangement Problem Using a Genetic Algorithm and a Heuristic Local Search

  • Suzuki, Atsushi;Yamamoto, Hisashi
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.2
    • /
    • pp.170-175
    • /
    • 2012
  • In this paper, a procedure using a genetic algorithm (GA) and a heuristic local search (HLS) is proposed for solving facility rearrangement problem (FRP). FRP is a decision problem for stopping/running of facilities and integration of stopped facilities to running facilities to maximize the production capacity of running facilities under the cost constraint. FRP is formulated as an integer programming model for maximizing the total production capacity under the constraint of the total facility operating cost. In the cases of 90 percent of cost constraint and more than 20 facilities, the previous solving method was not effective. To find effective alternatives, this solving procedure using a GA and a HLS is developed. Stopping/running of facilities are searched by GA. The shifting the production operation of stopped facilities into running facilities is searched by HLS, and this local search is executed for one individual in this GA procedure. The effectiveness of the proposed procedure using a GA and HLS is demonstrated by numerical experiment.

A New Solution for Stochastic Optimal Power Flow: Combining Limit Relaxation with Iterative Learning Control

  • Gong, Jinxia;Xie, Da;Jiang, Chuanwen;Zhang, Yanchi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.80-89
    • /
    • 2014
  • A stochastic optimal power flow (S-OPF) model considering uncertainties of load and wind power is developed based on chance constrained programming (CCP). The difficulties in solving the model are the nonlinearity and probabilistic constraints. In this paper, a limit relaxation approach and an iterative learning control (ILC) method are implemented to solve the S-OPF model indirectly. The limit relaxation approach narrows the solution space by introducing regulatory factors, according to the relationship between the constraint equations and the optimization variables. The regulatory factors are designed by ILC method to ensure the optimality of final solution under a predefined confidence level. The optimization algorithm for S-OPF is completed based on the combination of limit relaxation and ILC and tested on the IEEE 14-bus system.

Fast Object Recognition using Local Energy Propagation from Combination of Saline Line Groups (직선 조합의 에너지 전파를 이용한 고속 물체인식)

  • 강동중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.311-311
    • /
    • 2000
  • We propose a DP-based formulation for matching line patterns by defining a robust and stable geometric representation that is based on the conceptual organizations. Usually, the endpoint proximity and collinearity of image lines, as two main conceptual organization groups, are useful cues to match the model shape in the scene. As the endpoint proximity, we detect junctions from image lines. We then search for junction groups by using geometric constraint between the junctions. A junction chain similar to the model chain is searched in the scene, based on a local comparison. A Dynamic Programming-based search algorithm reduces the time complexity for the search of the model chain in the scene. Our system can find a reasonable matching, although there exist severely distorted objects in the scene. We demonstrate the feasibility of the DP-based matching method using both synthetic and real images.

  • PDF

Workload Allocation Methods in Discrete Manufacturing Systems:Model and Optimization

  • Yingwen, Zheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1362-1366
    • /
    • 2003
  • Workload programming is allocating suitable workloads of production process according to the needs of products, which would minimize the total cost of both work and stock under some constraint conditions. In this paper, a production process flow chart of discrete manufacturing is presented by a Petri net, and the optimization model of workload-stock is established. An approach of the optimal workloads is provided by means of the integer matrix theory. An example is given to verify this method.

  • PDF