• Title/Summary/Keyword: Constraint Handling Technique

Search Result 11, Processing Time 0.026 seconds

Efficiency Evaluation of Harmony Search Algorithm according to Constraint Handling Techniques : Application to Optimal Pipe Size Design Problem (제약조건 처리기법에 따른 하모니써치 알고리즘의 효율성 평가 : 관로 최소비용설계 문제의 적용)

  • Yoo, Do Guen;Lee, Ho Min;Lee, Eui Hoon;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4999-5008
    • /
    • 2015
  • The application of efficient constraint handling technique is fundamental method to find better solutions in engineering optimization problems with constraints. In this research four of constraint handling techniques are used with a meta-heuristic optimization method, harmony search algorithm, and the efficiency of algorithm is evaluated. The sample problem for evaluation of effectiveness is one of the typical discrete problems, optimal pipe size design problem of water distribution system. The result shows the suggested constraint handling technique derives better solutions than classical constraint handling technique with penalty function. Especially, the case of ${\varepsilon}$-constrained method derives solutions with efficiency and stability. This technique is meaningful method for improvement of harmony search algorithm without the need for development of new algorithm. In addition, the applicability of suggested method for large scale engineering optimization problems is verified with application of constraint handling technique to big size problem has over 400 of decision variables.

A Geometry Constraint Handling Technique in Beam Stiffener Layout Optimization Problem (보 보강재 배치 최적화 문제에서의 기하구속조건 처리기법)

  • 이준호;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.870-875
    • /
    • 2004
  • Beam stiffeners have frequently been used for raising natural frequencies of base structures. In stiffener layout optimization problems, most of the previous researches considering the position and/or the length of the stiffener as design variables dealt with structures having just simple convex shapes such as a square or rectangle. The reason is concave shape structures have difficulties ill formulating geometry constraints. In this paper, a new geometry constraint handling technique, which can define both convex and concave feasible lesions and measure a degree of geometry constraint violation, is proposed. Evolution strategies (ESs) is utilized as an optimization tool. In addition, the constraint-handling technique of EVOSLINOC (EVOlution Strategy for scalar optimization with Lineal and Nonlinear Constraints) is utilized to solve constrained optimization problems. From a numerical example, the proposed geometry constraint handling technique is verified and proves that the technique can easily be applied to structures in net only convex but also concave shapes, even with a protrusion or interior holes.

  • PDF

Synthesis of four-bar linkage motion generation using optimization algorithms

  • Phukaokaew, Wisanu;Sleesongsom, Suwin;Panagant, Natee;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.197-210
    • /
    • 2019
  • Motion generation of a four-bar linkage is a type of mechanism synthesis that has a wide range of applications such as a pick-and-place operation in manufacturing. In this research, the use of meta-heuristics for motion generation of a four-bar linkage is demonstrated. Three problems of motion generation were posed as a constrained optimization probably using the weighted sum technique to handle two types of tracking errors. A simple penalty function technique was used to deal with design constraints while three meta-heuristics including differential evolution (DE), self-adaptive differential evolution (JADE) and teaching learning based optimization (TLBO) were employed to solve the problems. Comparative results and the effect of the constraint handling technique are illustrated and discussed.

Adaptive Truncation technique for Constrained Multi-Objective Optimization

  • Zhang, Lei;Bi, Xiaojun;Wang, Yanjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5489-5511
    • /
    • 2019
  • The performance of evolutionary algorithms can be seriously weakened when constraints limit the feasible region of the search space. In this paper we present a constrained multi-objective optimization algorithm based on adaptive ε-truncation (ε-T-CMOA) to further improve distribution and convergence of the obtained solutions. First of all, as a novel constraint handling technique, ε-truncation technique keeps an effective balance between feasible solutions and infeasible solutions by permitting some excellent infeasible solutions with good objective value and low constraint violation to take part in the evolution, so diversity is improved, and convergence is also coordinated. Next, an exponential variation is introduced after differential mutation and crossover to boost the local exploitation ability. At last, the improved crowding density method only selects some Pareto solutions and near solutions to join in calculation, thus it can evaluate the distribution more accurately. The comparative results with other state-of-the-art algorithms show that ε-T-CMOA is more diverse than the other algorithms and it gains better in terms of convergence in some extent.

Development of Genetic Algorithms for Efficient Constraints Handling (구속조건의 효율적인 처리를 위한 유전자 알고리즘의 개발)

  • Cho, Young-Suk;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.725-730
    • /
    • 2000
  • Genetic algorithms based on the theory of natural selection, have been applied to many different fields, and have proven to be relatively robust means to search for global optimum and handle discontinuous or even discrete data. Genetic algorithms are widely used for unconstrained optimization problems. However, their application to constrained optimization problems remains unsettled. The most prevalent technique for coping with infeasible solutions is to penalize a population member for constraint violation. But, the weighting of a penalty for a particular problem constraint is usually determined in the heuristic way. Therefore this paper proposes, the effective technique for handling constraints, the ranking penalty method and hybrid genetic algorithms. And this paper proposes dynamic mutation tate to maintain the diversity in population. The effectiveness of the proposed algorithm is tested on several test problems and results are discussed.

  • PDF

Optimization and Evaluation of Flight Control Laws to Satisfy Longitudinal Handling Quality and Stability Margin Requirements (종축 비행성 요구도 및 안정성 여유 만족을 위한 비행제어법칙 최적화 및 평가)

  • Kim, Seong Hyeon;Ko, Deuk Won;Lee, Tae Hyun;Kim, Dong Hwan;Kim, Byoung Soo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.8-15
    • /
    • 2021
  • This paper describes a design method using an optimization technique to satisfy the longitudinal handling quality of high maneuverable jet aircraft. The dynamic inversion technique was applied to the target aircraft, and the control gain optimization satisfied the longitudinal short-period handling quality, however, the stability margin was not considered. If the stability margin is not satisfied, it is necessary to directly readjust the gains through trial and error methods for improvement. To improve this, an additional compensator and an optimization constraint were added to the control gain optimization procedure. In addition, the degree of handling quality satisfaction with the optimization result was reevaluated, and additional control evaluation criteria for the convergence of the time response and the steady state error that the flight performance requirement set as the optimization constraint cannot be reflected, and the results are described.

Dynamic Analysis of Plate Girder Bridge Using Object-Oriented Technique (객체지향기법을 이용한 플레이트 거더교의 동해석)

  • Cho, Jeong-Rae;Kwark, Jong-Won;Chin, Won-Jong;Choi, Eun-Suk;Kang, Jae-Yoon;Lee, Jung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.486-489
    • /
    • 2006
  • This paper presents a newly proposed object-oriented finite element framework and its applications on dynamic analysis of plate girder bridge. The developed framework supports various types of finite elements, materials, constraints, loads, and solution methods. One major feature different from other object-oriented finite element programs is that static model and dynamic state can be easily read from or written to a file. In addition, the framework supports efficient DOF pattern handling for a node connecting elements with different DOF patterns, new multi-point constraint handling, and various scripting languages for easy use of the library. In order to show the applicability to dynamic analysis, dynamic moving load analysis on plate girder bridge is performed.

  • PDF

A Multi-Objective Genetic Algorithm Approach to the Design of Reliable Water Distribution Networks

  • T.Devi Prasad;Park, Nam-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05b
    • /
    • pp.829-836
    • /
    • 2002
  • The paper presents a multi-objective genetic algorithm approach to the design of a water distribution network. The objectives considered are minimization of network cost and maximization of a reliability measure. In this study, a new reliability measure, called network resilience, is introduced. This measure mimics a designer's desire of providing excess power at nodes and designing reliable loops with practicable pipe diameters. The proposed method produces a set of Pareto-optimal solutions in the search space of cost and network resilience. Genetic algorithms are observed to be poor in handling constraints. To handle constraints in a better way, a constraint handling technique that does not require a penalty coefficient and applicable to water distribution systems is presented. The present model is applied to two example problems, which were widely reported. Pipe failure analysis carried out on some of the solutions obtained revealed that the network resilience based approach gave better results in terms of network reliability.

  • PDF

An integrated particle swarm optimizer for optimization of truss structures with discrete variables

  • Mortazavi, Ali;Togan, Vedat;Nuhoglu, Ayhan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.359-370
    • /
    • 2017
  • This study presents a particle swarm optimization algorithm integrated with weighted particle concept and improved fly-back technique. The rationale behind this integration is to utilize the affirmative properties of these new terms to improve the search capability of the standard particle swarm optimizer. Improved fly-back technique introduced in this study can be a proper alternative for widely used penalty functions to handle existing constraints. This technique emphasizes the role of the weighted particle on escaping from trapping into local optimum(s) by utilizing a recursive procedure. On the other hand, it guaranties the feasibility of the final solution by rejecting infeasible solutions throughout the optimization process. Additionally, in contrast with penalty method, the improved fly-back technique does not contain any adjustable terms, thus it does not inflict any extra ad hoc parameters to the main optimizer algorithm. The improved fly-back approach, as independent unit, can easily be integrated with other optimizers to handle the constraints. Consequently, to evaluate the performance of the proposed method on solving the truss weight minimization problems with discrete variables, several benchmark examples taken from the technical literature are examined using the presented method. The results obtained are comparatively reported through proper graphs and tables. Based on the results acquired in this study, it can be stated that the proposed method (integrated particle swarm optimizer, iPSO) is competitive with other metaheuristic algorithms in solving this class of truss optimization problems.

DIntrusion Detection in WSN with an Improved NSA Based on the DE-CMOP

  • Guo, Weipeng;Chen, Yonghong;Cai, Yiqiao;Wang, Tian;Tian, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5574-5591
    • /
    • 2017
  • Inspired by the idea of Artificial Immune System, many researches of wireless sensor network (WSN) intrusion detection is based on the artificial intelligent system (AIS). However, a large number of generated detectors, black hole, overlap problem of NSA have impeded further used in WSN. In order to improve the anomaly detection performance for WSN, detector generation mechanism need to be improved. Therefore, in this paper, a Differential Evolution Constraint Multi-objective Optimization Problem based Negative Selection Algorithm (DE-CMOP based NSA) is proposed to optimize the distribution and effectiveness of the detector. By combining the constraint handling and multi-objective optimization technique, the algorithm is able to generate the detector set with maximized coverage of non-self space and minimized overlap among detectors. By employing differential evolution, the algorithm can reduce the black hole effectively. The experiment results show that our proposed scheme provides improved NSA algorithm in-terms, the detectors generated by the DE-CMOP based NSA more uniform with less overlap and minimum black hole, thus effectively improves the intrusion detection performance. At the same time, the new algorithm reduces the number of detectors which reduces the complexity of detection phase. Thus, this makes it suitable for intrusion detection in WSN.