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Abstract: The paper presents a multi-objective genetic algorithm approach to the design of a water
distribution network. The objectives considered are minimization of network cost and maximization of a
reliability measure. In this study, a new reliability measure, called network resilience, is introduced. This
measure mimics a designer's desire of providing excess power at nodes and designing reliable loops with
practicable pipe diameters. The proposed method produces a set of Pareto-opfirﬁal solutions in the search
space of cost and network resilience. Genetic algorithms are observed to be poor in handling constraints.
To handle constraints in a better way, a constraint handling technique that does not require a penalty
coefficient and applicable to water distribution systems is presented. The present model is applied to two
example problems, which were widely reported. Pipe failure analysis carried out on some of the solutions
obtained revealed that the network resilience based approach gave better results in terms of network

reliability.
INTRODUCTION

When a source of water is far off demand points, water has to be transmitted through a network of
pipes from source to demand points at specified heads and flow rates. The present day water distribution
networks are complex and require huge investments in their construction and maintenance. Due to these
reasons a need to improve their efficiency by way of minimizing their cost and maximizing the benefit
accrued from them is strongly felt. In the last three decades significant number of methods have been
developed using liner programming, dynamic programming, enumeration techniques, heuristic methods, and
evolutionary programming. A review of these can be found in Simpson et. al. (1994) and Savic and
Walters (1997). Most of these methods consider the minimization of cost of a pipe network, although
some reliability studies and stochastic modeling of demands have been attempted. In addition to cost,
obviously, there are other possible objectives like reliability, redundancy and/or water quality that can be
included in the optimization process.

When more than one objective is present in an objective function, there may not exist one solution,
which is best with respect to all objectives. Instead, in a multi-objective optimization probtem there exist
a set of solutions called Pareto-optimal solutions or nondominated solutions. ThePareto set gives an
engineer more flexibility in the selection of a practicable solution. . Todini (2000) presented a heuristic
method considering cost function and resilience index, a reliability measure, as objectives. Although this
method is a step forward in considering multiple objectives in pipe network optimization, the
Pareto-optimal front obtained can at maximum be an approximation of true Pareto-optimal front because
of the heuristic method used. Also, resilience index does not avoid loops made of widely different
diameters. This paper presents a multi-objective genetic algorithm approach to the design of a water
distribution network. The objectives considered are minimization of network cost and maximization of a
reliability measure. In this study. a new reliability measure, called network resilience, is introduced. This
measure mimics a designer's desire of providing excess power at nodes and designing reliable loops with

- 829 -



practicable pipe diameters. The proposed method produces a set of Pareto-optimal solutions in the search
space of cost and network resilience. Genetic algorithms are observed to be poor in handling constraints.
To handle constraints in a better way, a constraint handling technique that does not require a penalty

coefficient and applicable to water distribution systems is presented.

FORMULATION OF THE MODEL

The following is the proposed two-objective optimization model for a water distribution network design.
The two objective functions are: (i) minimization of network cost, and (ii) maximization of a reliability

measure.

fI(Di)zﬁc(Di’Li) ()

Minimize
Maximize fo=1, )
where C(DisL;) = cost of the pipe i with diameter Di and length Li P = number of pipes in the

system; and I,= network resilience. The above optimization model is subjected to the following

constraints:

g;(H,D)=0 j =12, 3)
H;2H] i=12,m (@)
D, e {a} i = 1.2,np (5)

H

where nn = number of junction nodes; g(H,D)= nodal flow continuity equations: °'j= head at any node

j, which must be greater than a minimum specified value Hj'; and all Di's are discrete pipe sizes
selected from a set of commercially available sizes.

The above-formulated model is a multi-objective mixed integer nonlinear optimization model. It can be
solved using a multi-objective genetic algorithm. In this study, network hydraulic analysis is performed
using the method developed by Gupta and Prasad (2000), which require a less number of iterations with
any initial guess of pipe flows. For calculating pipe head losses, Hazen-Williams equation in the following
form is used.

1.852

wlLg
hf PSRN
G, D (6)
where = a numerical constant, which depends on the units used; and Cy = Hazen-Williams coefficient. In

this study =10.5088 (SI units) is used.
MULTI-OBJECTIVE GENETIC ALGORITHMS

In dealing with multicriterion optimization problems, classical search and optimization methods are not
etficient. simply because (i) most of them cannot find multiple solutions in a single run, thereby requiring
them to be applied as many times as the number of desired Paretooptimal solutions, (ii) multiple
application of these methods do not guarantee finding widely different Paretooptimal solutions, and (iii)

most of them cannot efficiently handle problems with discrete variables and problems having multiple
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optimal solutions. On the contrary, the studies on evolutionary search algorithms, over the past few years,
have shown that these methods can be efficiently used to eliminate most of the above difficulties of
classical methods (Deb 2001). Since they use a population of solutions in their search, multiple
Paretooptimal solutions can, in principle, be found in one single run. The use of diversity preserving
mechanisms can be added to the evolutionary search algorithms to find widely different Paretooptimal
solutions. In this study, a multi-objective genetic algorithm, called nondominated sorting genetic algorithm,

is used.
Nondominated Sorting Genetic Algorithm (NSGA)

The idea behind NSGA is that a ranking method is used to emphasize current nondominated points and a
niching method is used to maintain diversity in the population. Before the selection is performed, the
population is first ranked on the basis of an individual's nondomination level, which is found by the
following procedure, and then fitness is assigned to each population member.

) (2)

. A . . (1
For a problem having more than one objective function, any two solutions X ° and X can have one

)]

of two possibilities, one dominates the other or none dominates the other. A solution X~ is said to

dominate the other solution xm, if both the following conditions are true:

. TN 2
1. The solution x" is no worse (say the operator denotes worse and denotes better) than x?

m @
in all objectives, or fj(x ) fj(x ) for all j = 1,2,, M, objectives.

W 2
2. The solution x'" is strictly better than x* in at least one objective, or fj(x ) fj(x ) for

at least one j {1,2,,M}.

) (1)

. .. . (1 . . 2
If any of the above conditions is violated, the solution X ' does not dominate the solution P af x

dominates the solution x*’, then x" is said to be nondominated solution. In this study. real coded
NSGA with tournament selection, arithmetic crossover, and Gaussian mutation are used. For more
information about NSGA the reader may refer Srinivas and Deb (1994)

2)

. . W _ [, | ) _( 2 .2 2) ’
Arithmetic crossover: If we assume X —(xl’xz""’xud and X = W»X3.enXy ) are two parents

(solutions) selected for crossover, then two offspring are generated as follows:
¢ Kok k
Y6 = (v, ¥4 sy k=1,2 %)
where Y =Ax/ +(1-)x; yi=(1-A)x} +Ax]. and is a constant (0  1). This crossover operator

was found to give good results for water distribution networks optimization with = 0.75 (Vairavamoorthy
and Ali 2000). The same is used in this study also.

k
Gaussian mutation: If y(k) is an offspring and Yi is a gene randomly selected for mutation. then the gene

obtained after Gaussian mutation is as follows:
k &
z; =y; +N(0,0) (8)
— "
where N(0,0)is a random Gaussian number with mean zero and standard deviation 0= f(¥'). where

" ~ -— “ . . . . .
Yi is the maximum value of the gene. Here the value of 0 =0.1X ¥/ is used. With this scheme applied, if
new gene values exceed their range at either end. the values are adjusted to take the limiting values.

Constraint handling: In the previous GA applications to water distribution network optimization many
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improvements were suggested for constraint handling (Dandy etal. 1996; Savic and Walters 1997; and
Vairavamoorthy and Ali 2000). However these methods are not elegant in the sense that they all require a
penalty co-efficient. Identifying a penalty co-efficient is a difficult task and it may change from problem to
problem. The penalty co-efficient must take a value that will not allow the best infeasible solution to be
better than any feasible solution in the population (Simpson et al., 1994; Savic and Walters 1997). In this
study a method of constraint handling, which does not require a penalty co-efficient to be specified and

applicable to water distribution network is developed.
A solution x“is constraint-dominating a solution x| if any of the following are true:

1. solution x" is feasible and solution X'/’ is infeasible.
) ) . L.
has a smaller constraint violation.

2. solution x' and x* both are infeasible, but x

(

3. solution x”and x are feasible and solution i dominates solution j
: J

This way, feasible solutions are constraint-dominated to any infeasible solution and two infeasible solutions:
are compared based on their constraint violations only. However, when two feasible solutions are compared,
they are checked on their domination level (fitness value). The constraint violation for any solution can be
calculated using failure index as,

nn

€j

= =) 0 whenH; 2 H
nr apu e. =
YOHAXPRY)  where, Q; (Hj - Hj) otherwise ©)
k=1

i=1

The above constraint handling procedure does not require any penalty co-efficient and always a feasible

solution has more priority than any infeasible solution.

Reliability Measures

A branched water distribution network will have severe consequences in terms of reliability under failure
conditions. In order to reduce the risk of failure and improve the reliability of a water distribution network,
often designers introduce redundancy into networks by adding pipes to close the loops. This causes the
flow to reach demand points in alternative paths under failure conditions. Least cost design of pipe
networks have resulted some of the pipes having minimum specified diameter and heads at some of the
nodes barely satisfied (Savic and Walters 1997). Whenever there is a mechanical or hydraulic failure, the
internal head losses will increase causing failure of the network. This increased head losses during failure

conditions can be met, if sufficient excess power is available for internal dissipation. Based on this premise,

the following reliability measures are defined.

Resilience Index (1 r): Todini (2000), proposed the resilience index based on the concept that the power
input into the network is equal to the power lost internally to over come the friction plus the power that

is delivered at demand points. The resilience index for the entire network is defined as

£,
’F“(;—m‘“]

int

i

;IQJ(HJ_H;)

[:Z’]Qka+ﬁﬂ/y)—"inH; (10)

j=t

. . . . max - .
where Pim, is the amount of power dissipated in the network; and Py , is the maximum power that

would be dissipated internally in order to satisfy design demand Q and design head H'at junction nodes.

- 832 -



Maximization of resilience index improves the ability of a pipe network to counter the failure conditions.

Network Resilience (1 » ): Maximization of resilience index may improve output power at junction nodes.

However, it does not avoid loops having widely different diameters. Increase in the following reliability

measure, called network resilience (/ n), not only tries to improve nodal surplus power but also uniformity

in diameters of pipes connected to it. The surplus power at any node j is given by,
_ !
P =10, (H i—H j)
Reliable loops can be ensured, if the pipes connected to a node are not widely varying in diameter. If DI,

D2 and D3 (where, DI D2 D3) are the diameters of three pipes connected to node j then, uniformity of
that node is given by,

D.
c . D+D,+Di) c - ﬁ '
/ 3D, or ! np;xmax{D,} (1)

where npj = number of pipes connected to node j. The value of C = 1, if all pipes connected to al node
are having same diameter and C < 1, if the pipes connected to a node are having different diameters. For
nodes connected with only one pipe, the value of C is taken to be one. The network resilience Inis then
defined as the total resilience of junction nodes of a network per unit input power and is expressed as
iCP ;CJQI(HJ—H;)
R - —
I"=JP—'= kngkHé"'g(Pi/Y) (12)

rot

The network resilience can also be viewed as equivalent to resilience index with each node j is given a

weight of Cj based on the uniformity in diameter of pipes connected to it.
APPLICATION OF THE MODEL

Example 1: Comparison of the present method with that of Todini's is made on the basis of: (1)
efficiency of optimization algorithm and (2) comparison of reliability measures. The example network shown
in Fig.1, first used by Alperovits and Shamir (1977) and later on by many investigators, is chosen for this
purpose. This network is a typical network as it contains many alternative solutions with the same network
cost. The network is a two-loop network with 7 nodes and 8 pipes, each having a length of 1000m. Pipe
cost data, and node data are given in Table 1 and Table 2.respectively. There are eight decision variables
in this example. The model is first run with the objectives of minimizing cost and maximizingresilience
index. The GA parameters used are: population size = 100; probability of crossover = 1.0; probability of

mutation = 0.125 (approximately 1/P: P = number of variables); number of generations = 1000 and O share =
0.25. The designs, for which network cost is less than $500,000, are presented in Table 3. Also, the
designs reported by Todini (2000) are presented in this table. Comparison of the solutions obtained for a
network cost of $450.000, which has different network configurations, reveals the superiority of the
proposed optimization algorithm as it gave a solution with higher resilience index value. Also. the solutions
are uniformly distributed in this range. This can be easily understood as NSGA was observed to converge
towards Pareto-optimal front in many test problems Deb (1999). compared to heuristic method used by
Todini. Another advantage of NSGA is that it can give many solutions along the Pareto front (Fig.2).
Although resilience index based approach has improved the surplus power at nodes, it could not eliminate

impracticable loops. This aspect can be realized from the designs given in Table 3. In order to compare
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the reliability measures, two-loop network (Fig.l) is now solved with the objectives of minimizing the cost
and maximizing network resilience. The GA parameters used are the same as before. The Pareto-optimal
front is shown in Fig.3. Some of the designs obtained using this approach are given in table 4. These
designs are not only having increased surplus power at nodes, but also having loops with practicable
diameters.

Example 2: The present method is also applied to another benchmark problem, Hanoi water distribution
network, reported by many investigators. The network layout is taken from Fujiwara and Khang (1990).
This network consists of 32 nodes and 34 pipes, and is supplied by a fixed grade source at an elevation
of 100m. The minimum required head at all junction nodes is specified to be 30m. The set of
commercially available diameters (in inches) is D = [12, 16, 20, 24, 30, 40] and their corresponding cost
per unit length is calculated using the equation 1.1D1.5. In this problem, the number of decision variables

is 34 and the GA parameters used are: population size = 200; probability of crossover = 1.0; probability of

mutation = 0.03; number of generations = 10000; and O are= 0.4. This method further substantiates the
results obtained for two-loop network. The Pareto optimal front is as shown in Fig.4. The engineer can

now use these various solutions for further analysis to select a suitable design.

CONCLUSIONS

Most of the water distribution network optimization models have considered network cost as a sole
objective. This paper describes the application of a multi-objective genetic algorithm model to the design of
a water distribution network. A better constraint handling technique that does not require a penalty
coefficient and applicable to water distribution networks is presented. The objectives considered in this
study are: minimization of network cost and maximization of a reliability measure. The reliability measure
used is network resilience is a measure of both the nodal surplus power and the uniformity in diameters
connected to that node. Increase in the value of network resilience improves the reliability of a network
under failure conditions. Application of the model to the example problems revealed that the network
resilience based approach gave better results in terms of pipe failure reliability than resilience index based

approach.
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Table 1: Pipe size and cost data for two-loop network

Dia (in) 1 2 4 6 8 10 12 14 16 18 20 22 24
Cost ($/m) (2 8 11 16 23 32 50 60 90 130 {170 |300 . (550
Table 2: Node data for two-loop network
Node 1 2 3 4 5 6 7
Head( m) 210 180 190 185 180 195 190
Demand (m3/h)] -1120 100 100 120 270 330 200

Table 3: Results of two-loop network using Resilience Index

. . . . L Design obtained using Todini's Method
P i p e| Design obtained using NSGA(Diameter in inches) . L
(Diameter in inches)
Ne- 1 2 3 4 5 1 2 3 4 5
1 18 18 20 20 20 18 18 20 20 20
2 10 14 14 14 16 10 16 14 14 14
3 16 14 14 14 14 16 14 14 14 14
4 4 8 6 8 2 4 6 6 8 6
S 16 14 12 14 14 16 14 14 14 14
6 10 2 1 1 1 10 1 1 1 1
7 10 14 14 14 14 10 14 14 14 14
8 ‘1 10 10 10 10 1 10 10 10 12
cost($)}419000{430000[450000§467000| 479000 | 419000 | 450000 | 460000 | 467000 | 468000
I, 10.2229]0.3612]0.4333]0.4796 | 0.5170 | 0.2229 | 0.4054 | 0.4681 | 0.4796 | 0.4905

Note:w=10.5088 is used in Hazen-Williams equation for both the cases

Table 4: Results of two-loop network using NSGA with Network Resilience
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0.3227
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0.4239
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Total Surp. Head(m)
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