• 제목/요약/키워드: Constrained optimization

검색결과 456건 처리시간 0.243초

Symbiotic Organisms Search for Constrained Optimization Problems

  • Wang, Yanjiao;Tao, Huanhuan;Ma, Zhuang
    • Journal of Information Processing Systems
    • /
    • 제16권1호
    • /
    • pp.210-223
    • /
    • 2020
  • Since constrained optimization algorithms are easy to fall into local optimum and their ability of searching are weak, an improved symbiotic organisms search algorithm with mixed strategy based on adaptive ε constrained (ε_SOSMS) is proposed in this paper. Firstly, an adaptive ε constrained method is presented to balance the relationship between the constrained violation degrees and fitness. Secondly, the evolutionary strategies of symbiotic organisms search algorithm are improved as follows. Selecting different best individuals according to the proportion of feasible individuals and infeasible individuals to make evolutionary strategy more suitable for solving constrained optimization problems, and the individual comparison criteria is replaced with population selection strategy, which can better enhance the diversity of population. Finally, numerical experiments on 13 benchmark functions show that not only is ε_SOSMS able to converge to the global optimal solution, but also it has better robustness.

SMOOTHING APPROXIMATION TO l1 EXACT PENALTY FUNCTION FOR CONSTRAINED OPTIMIZATION PROBLEMS

  • BINH, NGUYEN THANH
    • Journal of applied mathematics & informatics
    • /
    • 제33권3_4호
    • /
    • pp.387-399
    • /
    • 2015
  • In this paper, a new smoothing approximation to the l1 exact penalty function for constrained optimization problems (COP) is presented. It is shown that an optimal solution to the smoothing penalty optimization problem is an approximate optimal solution to the original optimization problem. Based on the smoothing penalty function, an algorithm is presented to solve COP, with its convergence under some conditions proved. Numerical examples illustrate that this algorithm is efficient in solving COP.

Hopfield neuron based nonlinear constrained programming to fuzzy structural engineering optimization

  • Shih, C.J.;Chang, C.C.
    • Structural Engineering and Mechanics
    • /
    • 제7권5호
    • /
    • pp.485-502
    • /
    • 1999
  • Using the continuous Hopfield network model as the basis to solve the general crisp and fuzzy constrained optimization problem is presented and examined. The model lies in its transformation to a parallel algorithm which distributes the work of numerical optimization to several simultaneously computing processors. The method is applied to different structural engineering design problems that demonstrate this usefulness, satisfaction or potential. The computing algorithm has been given and discussed for a designer who can program it without difficulty.

Noisy 한 CFD 결과에 대한 구속조건을 고려한 EGO 방법 연구 (A STUDY ON CONSTRAINED EGO METHOD FOR NOISY CFD DATA)

  • 배효길;권장혁
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.32-40
    • /
    • 2012
  • Efficient Global Optimization (EGO) method is a global optimization technique which can select the next sample point automatically by infill sampling criteria (ISC) and search for the global minimum with less samples than what the conventional global optimization method needs. ISC function consists of the predictor and mean square error (MSE) provided from the kriging model which is a stochastic metamodel. Also the constrained EGO method can minimize the objective function dealing with the constraints under EGO concept. In this study the constrained EGO method applied to the RAE2822 airfoil shape design formulated with the constraint. But the noisy CFD data caused the kriging model to fail to depict the true function. The distorted kriging model would make the EGO deviate from the correct search. This distortion of kriging model can be handled with the interpolation(p=free) kriging model. With the interpolation(p=free) kriging model, however, the search of EGO solution was stalled in the narrow feasible region without the chance to update the objective and constraint functions. Then the accuracy of EGO solution was not good enough. So the three-step search method was proposed to obtain the accurate global minimum as well as prevent from the distortion of kriging model for the noisy constrained CFD problem.

DUALITY FOR LINEAR CHANCE-CONSTRAINED OPTIMIZATION PROBLEMS

  • Bot, Radu Ioan;Lorenz, Nicole;Wanka, Gert
    • 대한수학회지
    • /
    • 제47권1호
    • /
    • pp.17-28
    • /
    • 2010
  • In this paper we deal with linear chance-constrained optimization problems, a class of problems which naturally arise in practical applications in finance, engineering, transportation and scheduling, where decisions are made in presence of uncertainty. After giving the deterministic equivalent formulation of a linear chance-constrained optimization problem we construct a conjugate dual problem to it. Then we provide for this primal-dual pair weak sufficient conditions which ensure strong duality. In this way we generalize some results recently given in the literature. We also apply the general duality scheme to a portfolio optimization problem, a fact that allows us to derive necessary and sufficient optimality conditions for it.

Hyperion 영상의 제약선형분광혼합분석 기반 무감독 Endmember 추출 최적화 기법 (Unsupervised Endmember Selection Optimization Process based on Constrained Linear Spectral Unmixing of Hyperion Image)

  • 최재완;김용일;유기윤
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.211-216
    • /
    • 2006
  • The Constrained Linear Spectral Unmixing(CLSU) is investigated for sub-pixel image processing, Its result is the abundance map which mean fractions of endmember existing in a mixed pixel. Compared to the Linear Spectral Unmixing using least square method, CLSU uses the NNLS (Non-Negative Least Square) algorithm to guarantee that the estimated fractions are constrained. But, CLSU gets Into difficulty in image processing due to select endmember at a user's disposition. In this study, endmember selection optimization method using entropy in the error-image analysis is proposed. In experiments which is used hyperion image, it is shown that our method can select endmember number than CLSU based on unsupervised endemeber selection.

  • PDF

실수코딩 유전알고리즘에 관한 연구 (A Study on a Real-Coded Genetic Algorithm)

  • 진강규;주상래
    • 제어로봇시스템학회논문지
    • /
    • 제6권4호
    • /
    • pp.268-275
    • /
    • 2000
  • The increasing technological demands of today call for complex systems, which in turn involve a series of optimization problems with some equality or inequality constraints. In this paper, we presents a real-coded genetic algorithm(RCGA) as an optimization tool which is implemented by three genetic operators based on real coding representation. Through a lot of simulation works, the optimum settings of its control parameters are obtained on the basis of global off-line robustness for use in off-line applications. Two optimization problems are Presented to illustrate the usefulness of the RCGA. In case of a constrained problem, a penalty strategy is incorporated to transform the constrained problem into an unconstrained problem by penalizing infeasible solutions.

  • PDF

유전해법을 이용한 비선형최적화 문제의 효율적인 해법 (An Efficient Method for Nonlinear Optimization Problems using Genetic Algorithms)

  • 임승환;이동춘
    • 산업경영시스템학회지
    • /
    • 제20권44호
    • /
    • pp.93-101
    • /
    • 1997
  • This paper describes the application of Genetic Algorithms(GAs) to nonlinear constrained mixed optimization problems. Genetic Algorithms are combinatorial in nature, and therefore are computationally suitable for treating discrete and integer design variables. But, several problems that conventional GAs are ill defined are application of penalty function that can be adapted to transform a constrained optimization problem into an unconstrained one and premature convergence of solution. Thus, we developed an improved GAs to solve this problems, and two examples are given to demonstrate the effectiveness of the methodology developed in this paper.

  • PDF

ITERATION METHOD FOR CONSTRAINED OPTIMIZATION PROBLEMS GOVERNED BY PDE

  • Lee, Hyung-Chun
    • 대한수학회논문집
    • /
    • 제13권1호
    • /
    • pp.195-209
    • /
    • 1998
  • In this paper we present a new iteration method for solving optimization problems governed by partial differential equations. We generalize the existing methods such as simple gradient methods and pseudo-time methods to get an efficient iteration method. Numerical tests show that the convergence of the new iteration method is much faster than those of the pseudo-time methods especially when the parameter $\sigma$ in the cost functional is small.

  • PDF

A GLOBALLY AND SUPERLIEARLY CONVERGENT FEASIBLE SQP ALGORITHM FOR DEGENERATE CONSTRAINED OPTIMIZATION

  • Chen, Yu;Xie, Xiao-Liang
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.823-835
    • /
    • 2010
  • In this paper, A FSQP algorithm for degenerate inequality constraints optimization problems is proposed. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving a quadratic programming subproblem. To overcome the Maratos effect, a higher-order correction direction is obtained by solving another quadratic programming subproblem. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions. Finally, some preliminary numerical results are reported.