• Title/Summary/Keyword: Constrained nonlinear optimization problem

Search Result 79, Processing Time 0.026 seconds

Multivariable constrained model-based predictive control with application to boiler systems (제약조건을 갖는 다변수 모델 예측제어기의 보일러 시스템 적용)

  • Son, Won-Gi;Gwon, O-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.582-587
    • /
    • 1997
  • This paper deals with the control problem under nonlinear boiler systems with noise, and input constraints. MCMBPC(Multivariable Constrained Model-Based Predictive Controller) proposed by Wilkinson et al.[10,11] is used and nominal model is modified in this paper in order to applied to nonlinear boiler systems with feed-forward terms. The solution of the cost function optimization constrained on input and/or output variables is achieved using quadratic programming, via singular value decomposition(SVD). The controller designed is shown to satisfy the constraints and to have excellent tracking performance via simulation applied to nonlinear dynamic drum boiler turbine model for 16OMW unit.

  • PDF

Economic Power Dispatch with Valve Point Effects Using Bee Optimization Algorithm

  • Kumar, Rajesh;Sharma, Devendra;Kumar, Anupam
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.19-27
    • /
    • 2009
  • This paper presents a newly developed optimization algorithm, the Bee Optimization Algorithm (BeeOA), to solve the economic power dispatch (EPD) problem. The authors have developed a derivative free and global optimization technique based on the working of the honey bee. The economic power dispatch problem is a nonlinear constrained optimization problem. Classical optimization techniques fail to provide a global solution and evolutionary algorithms provide only a good enough solution. The proposed approach has been examined and tested on two test systems with different objectives. A simple power dispatch problem is tested first on 6 generators and then the algorithm is demonstrated on 13 thermal unit systems whose incremental fuel cost function takes into account the value point loading effect. The results are promising and show the effectiveness and robustness of the proposed approach over recently reported methods.

Analytic and Discrete Fairing of 3D NURBS Curves (3D NURBS 곡선의 해석적 및 이산적 순정)

  • 홍충성;홍석용;이현찬
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.127-138
    • /
    • 1999
  • For reverse engineering, curves and surfaces are modeled for new products by interpolating the digitized data points. But there are many measuring or deviation errors. Therefore, it is important to handle errors during the curve or surface modeling. If the errors are ignored, designer could get undesirable results. For this reason, fairing procedure with the aesthetics criteria is necessary in computer modeling. This paper presents methods of 3D NURBS curve fairing. The techniques are based on automatic repositioning of the digitized dat points or the NURBS curve control points by a constrained nonlinear optimization algorithm. The objective function is derived variously by derived curved. Constraints are distance measures between the original and the modified digitized data points. Changes I curve shape are analyzed by illustrations of curve shapes, and continuous plotting of curvature and torsion.

  • PDF

Time-Optimal Multistage Controllers for Nonlinear Continuous Processes (비선형 연속계를 위한 다단계 시간최적 제어기)

  • Yoon, Joong sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.128-136
    • /
    • 1995
  • The problem addressed in this paper is that of the on-line computational burden of time-optimal control laws for quick, strongly nonlinear systems like revolute robots. It will be demonstrated that a large amount of off-line computation can be substituted for most of the on-line burden in cases of time optimization with constrained inputs if differential point-to- point specifications can be relaxed to cell-to-cell transitions. These cells result from a coarse discretization of likely swaths of state space into a set of nonuniform, contiguous volumes of relatively simple shapes. The cell boundaries approximate stream surfaces of the phase fluid and surfaces of equal transit times. Once the cells have been designed, the bang- bang schedules for the inputs are determined for all likely starting cells and terminating cells. The scheduling process is completed by treating all cells into which the trajectories might unex- pectedly stray as additional starting cells. Then an efficient-to-compute control law can be based on the resulting table of optimal strategies.

  • PDF

The Security Constrained Economic Dispatch with Line Flow Constraints using the Multi PSO Algorithm Based on the PC Cluster System (PC 클러스터 기반의 Multi-HPSO를 이용한 안전도 제약의 경제급전)

  • Jang, Se-Hwan;Kim, Jin-Ho;Park, Jong-Bae;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1658-1666
    • /
    • 2009
  • This paper proposes an approach of Mult_HPSO based on the PC cluster system to reduce or remove the stagnation on an early convergence effect of PSO, reduce an execution time and improve a search ability on an optimal solution. Hybrid PSO(HPSO) is combines the PSO(Particle Swarm Optimization) with the mutation of conventional GA(Genetic Algorithm). The conventional PSO has operated a search process in a single swarm. However, Multi_PSO operates a search process through multiple swarms, which increments diversity of expected solutions and reduces the execution time. Multiple Swarms are composed of unsynchronized PC clusters. We apply to SCED(security constrained economic dispatch) problem, a nonlinear optimization problem, which considers line flow constraints and N-1 line contingency constraints. To consider N-1 line contingency in power system, we have chosen critical line contingency through a process of Screening and Selection based on PI(performace Index). We have applied to IEEE 118 bus system for verifying a usefulness of the proposed approaches.

A METHOD USING PARAMETRIC APPROACH WITH QUASINEWTON METHOD FOR CONSTRAINED OPTIMIZATION

  • Ryang, Yong-Joon;Kim, Won-Serk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.127-134
    • /
    • 1989
  • This paper proposes a deformation method for solving practical nonlinear programming problems. Utilizing the nonlinear parametric programming technique with Quasi-Newton method [6,7], the method solves the problem by imbedding it into a suitable one-parameter family of problems. The approach discussed in this paper was originally developed with the aim of solving a system of structural optimization problems with frequently appears in various kind of engineering design. It is assumed that we have to solve more than one structural problem of the same type. It an optimal solution of one of these problems is available, then the optimal solutions of thel other problems can be easily obtained by using this known problem and its optimal solution as the initial problem of our parametric method. The method of nonlinear programming does not generally converge to the optimal solution from an arbitrary starting point if the initial estimate is not sufficiently close to the solution. On the other hand, the deformation method described in this paper is advantageous in that it is likely to obtain the optimal solution every if the initial point is not necessarily in a small neighborhood of the solution. the Jacobian matrix of the iteration formula has the special structural features [2, 3]. Sectioon 2 describes nonlinear parametric programming problem imbeded into a one-parameter family of problems. In Section 3 the iteration formulas for one-parameter are developed. Section 4 discusses parametric approach for Quasi-Newton method and gives algorithm for finding the optimal solution.

  • PDF

Performance Comparison of CEALM and NPSOL

  • Seok, Hong-Young;Jea, Tahk-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.169.4-169
    • /
    • 2001
  • Conventional methods to solve the nonlinear programming problem range from augmented Lagrangian methods to sequential quadratic programming (SQP) methods. NPSOL, which is a SQP code, has been widely used to solve various optimization problems but is still subject to many numerical problems such as convergence to local optima, difficulties in initialization and in handling non-smooth cost functions. Recently, many evolutionary methods have been developed for constrained optimization. Among them, CEALM (Co-Evolutionary Augmented Lagrangian Method) shows excellent performance in the following aspects: global optimization capability, low sensitivity to the initial parameter guessing, and excellent constraint handling capability due to the benefit of the augmented Lagrangian function. This algorithm is ...

  • PDF

Reliability Optimization By using a Nonlinear Programming (비선형계량법(非線型計量法)을 이용한 신뢰성(信賴性)의 최적화(最適化))

  • Lee, Chang-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.9 no.2
    • /
    • pp.31-36
    • /
    • 1981
  • This paper deals with the reliability optimization of parallel - in - series system subject to several linear constraints. The model of nonlinear constrained optimization is transformed to a saddle point problem by using Lagrange multipliers. Then Newton - Raphson method is used to solve the resulting problem and these step - by - step solution procedures are programmed in Basic Level II of micro - computer TRS-80. An example which has two linear constraints is solved and the results are analyzed.

  • PDF

Parameter estimation of four-parameter viscoelastic Burger model by inverse analysis: case studies of four oil-refineries

  • Dey, Arindam;Basudhar, Prabir Kr.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.211-228
    • /
    • 2012
  • This paper reports the development of a generalized inverse analysis formulation for the parameter estimation of four-parameter Burger model. The analysis is carried out by formulating the problem as a mathematical programming formulation in terms of identification of the design vector, the objective function and the design constraints. Thereafter, the formulated constrained nonlinear multivariable problem is solved with the aid of fmincon: an in-built constrained optimization solver module available in MatLab. In order to gain experience, a synthetic case-study is considered wherein key issues such as the determination and setting up of variable bounds, global optimality of the solution and minimum number of data-points required for prediction of parameters is addressed. The results reveal that the developed technique is quite efficient in predicting the model parameters. The best result is obtained when the design variables are subjected to a lower bound without any upper bound. Global optimality of the solution is achieved using the developed technique. A minimum of 4-5 randomly selected data-points are required to achieve the optimal solution. The above technique has also been adopted for real-time settlement of four oil refineries with encouraging results.

The Section Optimization of Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 단면최적화)

  • 노금래;김만철;박선규;이인원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.718-723
    • /
    • 1998
  • The program which could determine cross-sectional dimension of the prestressed concrete box girder bridges at the stage of preliminary design was developed using the optimal technique in this study. It could minimize the cost required in the design of box girder bridges and the construction with the full staging method. Objective cost function consisted of six independent variables such as height of cross-section, jacking force and thickness of web and bottom flange. The SUMT(Sequntial Unconstrained minimization Technique) was used to solve the constrained nonlinear minimization optimal problem. Using the program developed in this study, optimum design was performed for existing bridges with one cell cross section of constant depth. The result verify the compatibility of the program.

  • PDF