• Title/Summary/Keyword: Constitutive laws

Search Result 73, Processing Time 0.028 seconds

Analytical Model for Shear Strength of RS Hybrid Steel Beams with Reinforced Concrete Ends (단부 RC조와 중앙부 철골조로 이루어진 RS 보의 전단강도예측을 위한 해석모델)

  • 김욱종;문정호;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.602-609
    • /
    • 2001
  • A strut-and-tie model was proposed to predict the shear strength of RS beam which is a hybrid steel beam with reinforced concrete ends. The proposed model is capable of considering the concrete softening effects due to diagonal shear cracks at the embedded area of steel in concrete. It can predict tile failure strength of RS beam from the mathematical formulations which are based on equilibrium, compatibility, and the constitutive laws of cracked reinforced concrete. The previous experimental results of 15 RS beams were analyzed with the proposed model and the analytical results were also compared with formulas currently available. The comparison revealed that the proposed model can predict the strength of RS beam better than the others. The average ratio of experimental strengths to analytical results was 1.02 and the standard deviation was 0.126.

Analytical Method of Prestressed Concrete Members with Unbonded Tendons (부착되지 않은 텐돈을 갖는 프리스트레스트 콘크리트부재의 해석)

  • 문정호;이리형
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.75-85
    • /
    • 1995
  • The purpose of the present study is to develop a computer program which can be used to analyze prestressed concrete structures containing either bonded or unbonded tendons. To accomplish this, first, the concrete, nonprestressed, and prestressed steels are modeled with cyclic constitutive laws to take into account the various loading effects. Then, the hybrid-type element method is derived to improve the computations capability of stresses and strains, especially for the unbonded tendon. Since it allows one to determine the cross-sectional deformations in an element without any assumptions for its deformed shape, the element length can be much longer than that of the conventional finite element method. In order to achieve such a long element, various integral schemes are examined to implement them into the program. Then, the computational method for prestressing effects is developed consistently with the analytical method for the structure. Finally, analytical studies for actual tests were carried out to verify the program developed in this study.

  • PDF

Development of Performance-Based Seismic Design of RC Column Using FRP Jacket by Displacement Coefficient Method (FRP 보강 철근콘크리트기둥의 변위계수법에 의한 내진성능설계기법 개발)

  • Cho, Chang-Geun;Ha, Gee-Joo;Bae, Su-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.491-497
    • /
    • 2007
  • In the current research, the scheme of displacement-based seismic design for seismic retrofit of concrete structures using FRP composite materials has been proposed. An algorithm of the nonlinear flexural analysis of FRP composite concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. An algorithm for performance-based seismic retrofit design of reinforced concrete columns with FRP jacket has been newly introduced to modify the displacement coefficient method used in reinforced concrete structures. From applications of retrofit design, the method are easy to apply in the practice of retrofit design and give practical prediction of nonlinear seismic performance evaluation of retrofitted structures.

Development of Performance-Based Seismic Design of RC Column Retrofitted By FRP Jacket using Direct Displacement-Based Design (직접변위기반설계법에 의한 철근콘크리트 기둥의 FRP 피복보강 내진성능설계법의 개발)

  • Cho, Chang-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.105-113
    • /
    • 2007
  • In the current research, an algorithm of performance-based seismic retrofit design of reinforced concrete columns using FRP jacket has been proposed. For exact prediction of the nonlinear flexural analysis or FRP composite RC members, multiaxial constitutive laws of concrete and composite materials have been presented. For seismic retrofit design, an algorithm of direct displacement-based design method (DDM) proposed by Chopra and Goel (2001) has been newly applied to determine the design thickness of FRP jacket in seismic retrofit of reinforced concrete columns. To compare with the displacement coefficient method (DCM), the DDM gives an accurate prediction of the target displacement in highly nonlinear region, since the DCM uses the elastic stiffness before reaching the yield load as the effective stiffness but the DDM uses the secant stiffness.

Nonlinear Analysis of Stress-strain for RC Panel Subjected to Shear (순수전단이 작용하는 RC Panel의 응력-변형률 비선형해석)

  • Cha, Young-Gyu;Kim, Hak-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.175-181
    • /
    • 2010
  • The three truss models(equilibrium truss model, Mohr compatibility truss model, and the soften truss model) based on a rotating angle is called the rotating-angle model. The three rotating-angle models have a common weakness: they are incapable of predicting the so-called "contribution of concrete". To take into account this "contribution of concrete", the modern truss model(MCFT, STM) treats a cracked reinforced concrete element as a continuous material. By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, MTM is capable of producing the nonlinear analysis of reinforced concrete structures composed of membrane element. In this paper, an efficient algorithm is proposed for the solution of proposed model incorporated with failure criteria. This algorithm is used to analyze the behavior of reinforced membrane element using the results of Hsu test.

Estimation Model of Shear Transfer Strength for Uncracked Pull-Off Test Specimens based on Compression Field Theory (비균열 인장재하 시험체의 압축장 이론에 기반한 전단전달강도 산정모델)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.101-111
    • /
    • 2021
  • Two different types of shear-friction tests were classified by external loadings and referred to as a push-off and a pull-off test. In a pull-off test, a tension force is applied in the transverse direction of the test specimen to produce a shear stress at the shear plane. This paper presents a method to evaluate shear transfer strengths of uncracked pull-off specimens. The method is based on the compression field theory and different constitutive laws are applied in some ways to gain accurate shear strengths considering softening effects of concrete struts based on Modified Compression Field Theory (MCFT) and Softened Truss Model (STM). The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with the predicted values. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked pull-off test specimens. A shear strength evaluation formula considering the effective compressive strength of a concrete strut was proposed, and the applicability of the proposed formula was verified by comparing with the experimental results in the literature.

The efficient data-driven solution to nonlinear continuum thermo-mechanics behavior of structural concrete panel reinforced by nanocomposites: Development of building construction in engineering

  • Hengbin Zheng;Wenjun Dai;Zeyu Wang;Adham E. Ragab
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.231-249
    • /
    • 2024
  • When the amplitude of the vibrations is equivalent to that clearance, the vibrations for small amplitudes will really be significantly nonlinear. Nonlinearities will not be significant for amplitudes that are rather modest. Finally, nonlinearities will become crucial once again for big amplitudes. Therefore, the concrete panel system may experience a big amplitude in this work as a result of the high temperature. Based on the 3D modeling of the shell theory, the current work shows the influences of the von Kármán strain-displacement kinematic nonlinearity on the constitutive laws of the structure. The system's governing Equations in the nonlinear form are solved using Kronecker and Hadamard products, the discretization of Equations on the space domain, and Duffing-type Equations. Thermo-elasticity Equations. are used to represent the system's temperature. The harmonic solution technique for the displacement domain and the multiple-scale approach for the time domain are both covered in the section on solution procedures for solving nonlinear Equations. An effective data-driven solution is often utilized to predict how different systems would behave. The number of hidden layers and the learning rate are two hyperparameters for the network that are often chosen manually when required. Additionally, the data-driven method is offered for addressing the nonlinear vibration issue in order to reduce the computing cost of the current study. The conclusions of the present study may be validated by contrasting them with those of data-driven solutions and other published articles. The findings show that certain physical and geometrical characteristics have a significant effect on the existing concrete panel structure's susceptibility to temperature change and GPL weight fraction. For building construction industries, several useful recommendations for improving the thermo-mechanics' behavior of structural concrete panels are presented.

Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System (고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석)

  • Park Jeong-Hwa;Lee Jae-Owan;Kwon Sang-Ki;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.117-131
    • /
    • 2006
  • A coupled T-H-M(Thermo-Hydro-Mechanical) analysis was carried out for KENTEX (KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System), which is a facility for validating the coupled T-H-M behavior in the engineered barrier system of the Korean reference HLW(high-level waste) disposal system. The changes of temperature, water saturation, and stress were estimated based on the coupled T-H-M analysis, and the influence of the types of mechanical constitutive material laws was investigated by using elastic model, poroelastic model, and poroelastic-plastic model. The analysis was done using ABAQUS, which is a commercial finite element code for general purposes. From the analysis, it was observed that the temperature in the bentonite increased sharply for a couple of days after heating the heater and then slowly increased to a constant value. The temperatures at all locations were nearly at a steady state after about 37.5 days. In the steady state, the temperature was maintained at $90^{\circ}C$ at the interface between the heater and the bentonite and at about $70^{\circ}C$ at the interface between the bentonite and the confining cylinder. The variation of the water saturation with time in bentonite was almost same independent of the material laws used in the coupled T-H-M processes. By comparing the saturation change of T-H-M and that of H-M(Hydro-Mechanical) processes using elastic and poroelastic material mod31 respectively, it was found that the degree of saturation near the heater from T-H-M calculation was higher than that from the coupled H-M calculation mainly because of the thermal flux, which seemed to speed up the saturation. The stresses in three cases with different material laws were increased with time. By comparing the stress change in H-M calculation using poroelasetic and poroelasetic-plastic model, it was possible to conclude that the influence of saturation on the stress change is higher than the influence of temperature. It is, therefore, recommended to use a material law, which can model the elastic-plastic behavior of buffer, since the coupled T-H-M processes in buffer is affected by the variation of void ratio, thermal expansion, as well as swelling pressure.

  • PDF

Reproducing Racial Globality: W.E.B. Du Bois and the Sexual Politics of Black Internationalism

  • Weinbaum, Alys-Eve
    • Lingua Humanitatis
    • /
    • v.2 no.2
    • /
    • pp.223-265
    • /
    • 2002
  • In United States black mothers have consistently been treated as national outsiders, as women whose children, although ostensibly entitled to full citizenship, are in practice rarely provided with equal protection within the nation′s borders or under its laws. From the time he began writing in the aftermath of the failures of national Reconstruction, the African American public intellectual and political activist W. E. B. Du Bois realized that a truly effective anti-racist politics would also have to contend with the particular ways in which U.S. racism targeted black mothers. In short, he understood that an effective anti-racism would necessarily have to be a form of anti-sexism. This article examines the myriad ways in which Du Bois attempted to reconstruct the relationship between race and reproduction in the interest of producing anti-racist, anti-nationalist, as well as internationalist thinking. In so doing it treats the various representations of black maternity and child birth that Du Bois created, and elaborates on the rhetorical and political function of these representations in combating the racialization of national belonging on the one hand, and in articulating universal black citizenship, or what this article theorizes as racial globality on the other. The article begins by considering Du Bois′s attempts to transcend ideas about the racialized reproductive body as a source of national belonging within the United States, particularly his efforts to contest the idea of the reconstructing nation as a white nation reproduced exclusively by white women. Through analysis of Du Bois′s depiction of the birth and death of his son in his monumental work The Souls of Black Folk (1903) it demonstrates his reluctance to build an anti-racist politics founded on the idea that belonging within the nation is something that can be bestowed by one′s mother. The article proceeds by turning to Du Bois less well-known romantic novel, Dark Princess (1928) in which, by contrast, he depicts the birth of a "golden chi1d" who belongs not only within the United States, but within the world. This child, the son of an African American man and an Indian Princess, is cast as a messenger and messiah of a utopian alliance between pan-Asia and pan-Africa. In exploring the relationship between these two reproductive portraits, the article moves from a discussion of Du Bois′s critique of the ideological construction of the U.S. as a white nation reproduced by white progenitors, to an examination the literary figuration of a b1aek mother out of whose womb a black diasporic anti-imperialist alliance springs. In contrast to previous scholarship, which has tended to focus on the critique of U.S. racial nationalism that Du Bois expressed in his early work, or on the internationalism that he later embraced, this article pays close attention to how Du Bois′s anti-nationalist and internationalist politics together subtended by subtle, but constitutive, sexual politics.

  • PDF

Finite Element Analysis of Ultra High Performance Fiber Reinforced Concrete 50M Composite Box Girder (초고강도 섬유보강 콘크리트 50M 합성 박스거더의 유한요소해석)

  • Makhbal, Tsas-Orgilmaa;Kim, Do-Hyun;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.100-107
    • /
    • 2018
  • The material and geometrical nonlinear finite elment analysis of UHPFRC 50M composite box girder was carried out. Constitute law in tension and compressive region of UHPFRC and HPC were modeled based on specimen test. The accuracy of nonlinear FEM analysis was verified by the experimental result of UHPFRC 50M composite girder. The UHPFRC 50M segmental composite box girder which has 1.5% steel fiber of volume fraction, 135MPa compressive strength and 18MPa tensile strength was tested. The post-tensioned UHPFRC composite girder consisted of three segment UHPFRC U-girder and High Strength Concrete reinforced slab. The parts of UHPFRC girder were modeled by 8nodes hexahedron elements and reinforcement bars and tendons were built by 2nodes linear elements by Midas FEA software. The constitutive laws of concrete materials were selected Multi-linear model both of tension and compression function under total strain crack model, which was included in classifying of smeared crack model. The nonlinearity of reinforcement elements and tendon was simulated by Von Mises criteria. The nonlinear static analysis was applied by incremental-iteration method with convergence criteria of Newton-Raphson. The validation of numerical analysis was verified by comparison with experimental result and numerical analysis result of load-deflection response, neutral axis coordinate change, and cracking pattern of girder. The load-deflection response was fitted very well with comparison to the experimental result. The finite element analysis is seen to satisfactorily predict flexural behavioral responses of post-tensioned, reinforced UHPFRC composite box girder.