• Title/Summary/Keyword: Constitutive laws

Search Result 73, Processing Time 0.029 seconds

Nonlinear Tuned Mass Damper for self-excited oscillations

  • Gattulli, Vincenzo;Di Fabio, Franco;Luongo, Angelo
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.251-264
    • /
    • 2004
  • The effects of a class of nonlinear Tuned Mass Dampers on the aeroelastic behavior of SDOF systems are investigated. Unlike classical linear TMDs, nonlinear constitutive laws of the internal damping acting between the primary oscillator and the TMD are considered, while the elastic properties are keept linear. The perturbative Multiple Scale Method is applied to derive a set of bifurcation equations in the amplitude and phase and a parametric analysis is performed to describe the postcritical scenario of the system. Both cubic- and van der Pol-type dampings are considered and the dependence of the limit-cycle amplitudes on the system parameters is studied. These new results, compared with the previously obtained bifurcation scenario of a SDOF aeroelastic oscillator equipped with a linear TMD, show a detrimental effect on the maximum limit-cycle amplitude reduction of the nonlinear TMD. However, the analyses evidence that in the parameter region away from the perfect tuning condition the nonlinear connection can be used to tune the system with an enhancement of the limit-cycle amplitude reduction.

Curvature ductility of high strength concrete beams according to Eurocode 2

  • Bouzid, Haytham;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • Recently, the high-strength concrete is increasingly used in the construction of reinforced concrete structures due to its benefits, but this use is influenced negatively on the local ductility of structural elements. The objective of this study is the prediction of a new approach to evaluate the curvature ductility factor of high strength concrete beams according to Eurocode 2. After the presentation of the Constitutive laws of materials and the evaluation method of curvature ductility according to the Eurocode 2, we conduct a parametric study on the factors influencing the curvature ductility of inflected sections. The calibrating of the obtained results allows predicting a very simple approach for estimating the curvature ductility factor. The proposed formula allows to calculate the curvature ductility factor of high strength concrete beams directly according to the concrete strength $f_{ck}$, the yield strength of steel $f_{yk}$ and the ratio of tension and compression reinforcements ${\rho}$ and ${\rho}^{\prime}$ respectively, this proposed formula is validated by theoretical and experimental results of different researchers.

Behavior modeling and damage quantification of confined concrete under cyclic loading

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.625-635
    • /
    • 2017
  • Sets of nonlinear formulations together with an energy-based damage index (DI) are proposed to model the behavior and quantify the damage of the confined and unconfined concretes under monotonic and cyclic loading. The proposed formulations and DI can be employed in numerical simulations to determine the stresses and the damages to the fibers or the layers within the sections of reinforced concrete (RC) components. To verify the proposed formulations, an adaptive finite element computer program was generated to simulate the RC structures subjected to monotonic and cyclic loading. By comparing the simulated and the experimental test results, on both the full-scale structural members and concrete cylindrical samples, the proposed uniaxial behavior modeling formulations for confined and unconfined concretes under monotonic and cyclic loading, based on an iterative process, were accordingly adjusted, and then validated. The proposed formulations have strong mathematical structures and can readily be adapted to achieve a higher degree of precision by improving the relevant coefficients based on more precise tests. To apply the proposed DI, the stress-strain data of concrete elements is required. It can easily be calculated by using the proposed nonlinear constitutive laws for confined and unconfined concretes in this paper.

Shear response estimate for squat reinforced concrete walls via a single panel model

  • Massone, Leonardo M.;Ulloa, Marco A.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.647-665
    • /
    • 2014
  • Squat reinforced concrete walls require enough shear strength in order to promote flexural yielding, which creates the need for designers of an accurate method for strength prediction. In many cases, especially for existing buildings, strength estimates might be insufficient when more accurate analyses are needed, such as pushover analysis. In this case, estimates of load versus displacement are required for building modeling. A model is developed that predicts the shear load versus shear deformation of squat reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool, the formulation considers the wall as a single element, which presents an average strain and stress field for the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental database indicating that the fixed-angle models yield good results. The overall response (load-displacement) is also reasonable well predicted for specimens with diagonal compression failure.

Concrete fragmentation modeling using coupled finite element - meshfree formulations

  • Wu, Youcai;Choi, Hyung-Jin;Crawford, John E.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.173-195
    • /
    • 2013
  • Meshfree methods are known to have the capability to overcome the strict regularization requirements and numerical instabilities that encumber the finite element method (FEM) in large deformation problems. They are also more naturally suited for problems involving material perforation and fragmentation. To take advantage of the high efficiency of FEM and high accuracy of meshfree methods, a coupled finite element (FE) and reproducing kernel (RK, one of the meshfree approximations) formulation is described in this paper. The coupling of FE and RK approximation is implemented in an evolutionary fashion, where the extent and location of the evolution is dependent on a triggering criteria provided by the material constitutive laws. To enhance computational efficiency, Gauss quadrature is applied to integrate both FE and RK domains so that no state variable transfer is required when mesh conversion is performed. To control the hourglassing that might occur with 1-point integrated hexahedral grids, viscous type hourglass control is implemented. Meanwhile, the FEM version of the K&C concrete (KCC) model was modified to make it applicable in both FE and RK formulations. Results using this code and the KCC model are shown for the modeling of concrete responses under quasi-static, blast and impact loadings. These analyses demonstrate that fragmentation phenomena of the sort commonly observed under blast and impact loadings of concrete structures was able to be realistically captured by the coupled formulation.

Microstructural modeling of two-way bent shape change of composite two-layer beam comprising a shape memory alloy and elastoplastic layers

  • Belyaev, Fedor S.;Evard, Margarita E.;Volkov, Aleksandr E.;Volkova, Natalia A.;Vukolov, Egor A.
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.245-253
    • /
    • 2022
  • A two-layer beam consisting of an elastoplastic layer and a functional layer made of shape memory alloy (SMA) TiNi is considered. Constitutive relations for SMA are set by a microstructural model capable to calculate strain increment produced by arbitrary increments of stress and temperature. This model exploits the approximation of small strains. The equations to calculate the variations of the strain and the internal variables are based on the experimentally registered temperature kinetics of the martensitic transformations with an account of the crystallographic features of the transformation and the laws of equilibrium thermodynamics. Stress and phase distributions over the beam height are calculated by steps, by solving on each step the boundary-value problem for given increments of the bending moment (or curvature) and the tensile force (or relative elongation). Simplifying Bernoulli's hypotheses are applied. The temperature is considered homogeneous. The first stage of the numerical experiment is modeling of preliminary deformation of the beam by bending or stretching at a temperature corresponding to the martensitic state of the SMA layer. The second stage simulates heating and subsequent cooling across the temperature interval of the martensitic transformation. The curvature variation depends both on the total thickness of the beam and on the ratio of the layer's thicknesses.

A Study on the Applications of Finite Element Techniques to Chip Formation and Cutting Heat Generation Mechanism of Cutting Process (CHIP생성 및 절삭열 발생기구 해석을 위한 유한요소법 적용에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.148-155
    • /
    • 1995
  • The object of this study is to achieve a gteater understanding of meterial removal process and its mechanism. In this study, some applications of finite element techniques are applied to analyze the chip formation and cutting heat generation mechanism of metal cutting. To know the effect of cutting parameters, simulations employed some independent cutting variables change, such as constitutive deformation laws of workpiece and tool material, frictional coefficients and tool-chip contact interfaces, cutting speed, tool rake angles, depth of cut and this simulations also include large elastic-plastic defor- mation, adiabetic thermal analysis. Under a usual plane strain assumption, quasi-static, thermal-mechanical coupling analysis generate detailed informations about chip formation process and cutting heat generation mechanism Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction force on tool, cutting temperature and thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

Finite element modeling of reinforced concrete beams externally bonded with PET-FRP laminates

  • Rami A. Hawileh;Maha A. Assad;Jamal A. Abdalla; M. Z. Naser
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.163-173
    • /
    • 2024
  • Fiber-reinforced polymers (FRP) have a proven strength enhancement capability when installed into Reinforced Concrete (RC) beams. The brittle failure of traditional FRP strengthening systems has attracted researchers to develop novel materials with improved strength and ductility properties. One such material is that known as polyethylene terephthalate (PET). This study presents a numerical investigation of the flexural behavior of reinforced concrete beams externally strengthened with PET-FRP systems. This material is distinguished by its large rupture strain, leading to an improvement in the ductility of the strengthened structural members compared to conventional FRPs. A three-dimensional (3-D) finite element (FE) model is developed in this study to predict the load-deflection response of a series of experimentally tested beams published in the literature. The numerical model incorporates constitutive material laws and bond-slip behavior between concrete and the strengthening system. Moreover, the validated model was applied in a parametric study to inspect the effect of concrete compressive strength, PET-FRP sheet length, and reinforcing steel bar diameter on the overall performance of concrete beams externally strengthened with PET-FRP.

Constitutive Characteristics of Decomposed Korean Granites(1) (구성식을 이용한 다짐화강토의 공학적 특성(1))

  • Kim, Yong-Jin;Lee, In-Mo;Lee, In-Geun
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.55-78
    • /
    • 1994
  • Decomposed granite soil is a Granitic Gneiss, and it is a c Korean peninsula. It is known a changed significantly when it is aim of this study is to evaluat utility of the constitutive laws. Firstly, triaxial tests were pe sites prepared by the laborato scrutinized the characteristics results were analysed and the p evaluated. Finally, the predicted Even though the origins of slight difference in the angle of pression line( A) : both soils show In the effective mean normal uniqueness of the Normal Compr The relationships between the the decomposed granite soil tier OCR is larger than 2, the stress stress(MDS) or. even thous moved below the theoretical Ros was found to coincide with the (NC) soils, the pore pressure parameter, A,, increased up to 1.3. This phenomenon might be mainly due to the effect of the particle crushing during shearing, When the OCR value approaches 7, the negative pore pressure is developed in undrained tests and the dilatancy is observed in drained tests. The predicted and the observed behavior of drained tests showed relatively good fitting with the Cam-Clay model.

  • PDF

Shear Strain Big-Bang of RC Membrane Panel Subjected to Shear (순수전단이 작용하는 RC막판넬의 전단변형률 증폭)

  • Jeong, Je Pyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.101-110
    • /
    • 2015
  • Recently, nine $1397{\times}1397{\times}178mm$ RC panels were tested under in-plane pure-shear monotonic loading condition using the Panel Element Tester by Hsu (1997, ACI). By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, Modern Truss Model (MCFT, RA-STM) are capable of producing the nonlinear analysis of RC membrane panel through the complicated trial-and-error method with double loop. In this paper, an efficient algorithm with one loop is proposed for the refined Mohr compatibility Method based on the strut-tie failure criteria. This algorithm can be speedy calculated to analyze the shear history of RC membrane element using the results of Hsu test. The results indicate that the response of shear deformation energy at Big Bang of shear strain significantly influenced by the principal compressive stress-strain (crushing failure).