• Title/Summary/Keyword: Constituent phase

Search Result 123, Processing Time 0.023 seconds

Preparation of Proton-Conducting Gd-Doped Barium Cerate by Oxalate Coprecipitation Method

  • Yong Sung Choi;Soo Man Sim
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.213-221
    • /
    • 1998
  • $BaCe_{0.9}Gd_{0.1_O_{2.95}$ powder was synthesized by oxalate coprecipitation method. Precipitate with a stoichimetric ratio of the cations was prepared by adding a mixture of Ba, Ce and Gd nitrate solution to an oxalic acid solution at pH 4. Reaction between the constituent oxides to form a perovskite phase was initiated at $800^{\circ}C$ and a single phase $BaCe_{0.9}Gd_{0.1_O_{2.95}$ powder having good sinterability was obtained after calcination at $1000^{\circ}C$. Sintering green compacts of this powder for 6 h showed a considerable densification to start at $1100^{\circ}C$ and resulted in 93% and 97% relative densities at $1300^{\circ}$ and at $1450^{\circ}C$, respectively. Whereas the power compacts prepared by solid state reaction had lower relative densities, 78% at $1300^{\circ}$and 90% at $1450^{\circ}C$. Fine particles of $CeO_2$ second phase were observed in the surface of the sintered compacts. This was attributed to the evaporation of BaO from the surface that had been exposed during thermal etching.

  • PDF

Two-Phase Shallow Semantic Parsing based on Partial Syntactic Parsing (부분 구문 분석 결과에 기반한 두 단계 부분 의미 분석 시스템)

  • Park, Kyung-Mi;Mun, Young-Song
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.85-92
    • /
    • 2010
  • A shallow semantic parsing system analyzes the relationship that a syntactic constituent of the sentence has with a predicate. It identifies semantic arguments representing agent, patient, instrument, etc. of the predicate. In this study, we propose a two-phase shallow semantic parsing model which consists of the identification phase and the classification phase. We first find the boundary of semantic arguments from partial syntactic parsing results, and then assign appropriate semantic roles to the identified semantic arguments. By taking the sequential two-phase approach, we can alleviate the unbalanced class distribution problem, and select the features appropriate for each task. Experiments show the relative contribution of each phase on the test data.

A Two-Phase Shallow Semantic Parsing System Using Clause Boundary Information and Tree Distance (절 경계와 트리 거리를 사용한 2단계 부분 의미 분석 시스템)

  • Park, Kyung-Mi;Hwang, Kyu-Baek
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.531-540
    • /
    • 2010
  • In this paper, we present a two-phase shallow semantic parsing method based on a maximum entropy model. The first phase is to recognize semantic arguments, i.e., argument identification. The second phase is to assign appropriate semantic roles to the recognized arguments, i.e., argument classification. Here, the performance of the first phase is crucial for the success of the entire system, because the second phase is performed on the regions recognized at the identification stage. In order to improve performances of the argument identification, we incorporate syntactic knowledge into its pre-processing step. More precisely, boundaries of the immediate clause and the upper clauses of a predicate obtained from clause identification are utilized for reducing the search space. Further, the distance on parse trees from the parent node of a predicate to the parent node of a parse constituent is exploited. Experimental results show that incorporation of syntactic knowledge and the separation of argument identification from the entire procedure enhance performances of the shallow semantic parsing system.

A Study on the Characteristics of Amorphous TiAl by P/M Processing

  • Han, Chang-Suk;Jeon, Seung-Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.2
    • /
    • pp.51-55
    • /
    • 2016
  • The P/M processing of titanium aluminide using amorphous TiAl is developed by which it is possible to overcome inherent fabricability problems and to obtain a fine microstructure. A high quality amorphous TiAl powder produced by reaction ball milling shows clear glass transition far below a temperature at the onset of crystallization in differential scanning calorimetry above a heating rate of 0.05 K/s. We obtained a fully dense compact of amorphous TiAl powders, encapsulated in a vacuumed can, via viscous flow by hot isostatic pressing (HIP). Isothermally annealing of HIP'ed amorphous compact under a pressure of 196 MPa shows a progressive growth of ${\gamma}-TiAl$ phase with ${\alpha}2$ ($Ti_3Al$), which is characterized by increasing sharpness of X-ray peaks with temperature. Fully dense HIP'ed compact of titanium aluminide TiAl shows a high hardness of 505 Hv, suggesting strengthening mechanisms by sub-micron sized grain of ${\gamma}-TiAl$ and particle-dispersion by second phase constituent, ${\alpha}2$.

Modeling of unilateral effect in brittle materials by a mesoscopic scale approach

  • Pituba, Jose J.C.;Neto, Eduardo A. Souza
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.735-758
    • /
    • 2015
  • This work deals with unilateral effect of quasi-brittle materials, such as concrete. For this propose, a two-dimensional meso-scale model is presented. The material is considered as a three-phase material consisting of interface zone, matrix and inclusions - each constituent modeled by an appropriate constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes randomly placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements developed here in order to capture the effects of phase debonding and interface crack closure/opening. As an initial approximation, the inclusion is modeled as linear elastic as well as the matrix. Our main goal here is to show a computational homogenization-based approach as an alternative to complex macroscopic constitutive models for the mechanical behavior of the quasi-brittle materials using a finite element procedure within a purely kinematical multi-scale framework. A set of numerical examples, involving the microcracking processes, is provided. It illustrates the performance of the proposed model. In summary, the proposed homogenization-based model is found to be a suitable tool for the identification of macroscopic mechanical behavior of quasi-brittle materials dealing with unilateral effect.

Preparation and Characterization of EGCG Entrapped Ethosome (EGCG가 포집된 Ethosome의 제조와 특성조사)

  • Gwak, Hyo Jung;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.130-135
    • /
    • 2007
  • Entrapment of (-)-epigallocatechin gallate (EGCG) into ethosome was carried out for improving its stability against decomposition. Solubility of EGCG was increased by the addition of ethanol into water, which enable ethosome to entrap appropriate amount of EGCG. It was observed that the EGCG solution concentration and constituent lipid composition had a considerable effect on the particle size and entrapment efficiency of ethosomes. The formation of liquid crystalline phase in ethosome was investigated by polarized optical microscopy. By comparing the stability of EGCG in solution and in ethosome exposed to UV or high temperature, we evaluated the EGCG stabilization effect through its entrapment in ethosome. Incorporation of tocopherol into ethosome retarded the decomposition of EGCG under UV.

Rheology and morphology of concentrated immiscible polymer blends

  • Mewis, Jan;Jansseune, Thomas;Moldenaers, Paula
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.4
    • /
    • pp.189-196
    • /
    • 2001
  • The phase morphology is an important factor in the rheology of immiscible polymer blends. Through its size and shape, the interface between the two phases determines how the components and the interface itself will contribute to the global stresses. Rheological measurements have been used successfully in the past to probe the morphological changes in model blends, particularly for dilute systems. For more concentrated blends only a limited amount of systematic rheological data is available. Here, viscosities and first normal stress differences are presented for a system with nearly Newtonian components, the whole concentration range is covered. The constituent polymers are PDMS and PIB, their viscosity ratio can be changed by varying the temperature. The data reported here have been obtained at 287 K where the viscosities of the two components are identical. By means of relaxation experiments the measured stresses are decomposed into component and interfacial contributions. The concentration dependence is quite different for the two types of contribution. Except for the component contributions to the shear stresses there is no clear indication of the phase inversion. Plotting either the interfacial shear or normal stresses as a function of composition produces in some cases two maxima. The relaxation times of these stresses display a similar concentration dependence. Although the components have the same viscosity, the stress-component curves are not symmetrical with respect to the 50/50 blend. A slight elasticity of one of the components seems to be the cause of this effect. The data for the more concentrated blends at higher shear rates are associated with a fibrillar morphology.

  • PDF

PHOTOIONIZATION MODELS OF THE WARM IONIZED MEDIUM IN THE GALAXY (우리은하 중온 이온화 매질의 광이온화 모델)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.89-95
    • /
    • 2007
  • The warm ionized medium (WIM) outside classical H II regions is a fundamental gas-phase constituent of the Milky Way and other late-type spiral galaxies, and is traced by faint emission lines at optical wavelengths. We calculate the photoionization models of the WIM in the Galaxy by a stellar UV radiation with the effective temperature 35,000 K assuming not only spherical geometry but also plane parallel geometry, and compare the results with the observed emission line ratios. We also show the dependence of the emission line ratios on various gas-phase abundances. The emergent emission-line ratios are in agreement with the average-values of observed ratios of [S II] ${\lambda}6716/H{\alpha}$, [N II] ${\lambda}6583/H{\alpha}$, [O I] ${\lambda}6300/H{\alpha}$, [O III] ${\lambda}5007/H{\alpha}$, He I ${\lambda}5876/H{\alpha}$. However, their extreme values could not be explained with the photoionization models. It is also shown that the addition of all stellar radiation from the OB stars in the Hipparcos stellar catalog resembles that of an O7-O8 type star.

Effects of viscosities of slip on slip casting and properties of sintered bodies of cordierite (Slip의 점도가 slip casting 및 casting 및 cordierite 소결체의 특성에 미치는 영향)

  • Baik Yong-Hyuck;Chang Pok-Kie;Kwak Hyo-Sup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.202-207
    • /
    • 2005
  • We have investigated the relationship between a viscosity of the slip prepared from kaolin, quartz, $Mg(OH)_2$, etc and its influence on the speed of slip casting and the microsturcture of a sintered body. The speed of slip casting decreases as a viscosity of a slip decreases. The optimized viscosity range of a slip was found to be around $3.0\~17.0\;cP$. By careful controlling a viscosity of slip, homogeneous microstructure of outer surface layers, inner surface layers, intermediate layers, and inside layers were obtained by casting process. The specimen sintered at $1350^{\circ}C$ consists of a cordierite crystalline phase only as a constituent mineral.

Effect of viscosity ratio and AN content on the compatibilization of PC-SAN blends during ultrasound-assisted melt mixing

  • Kim, Hyung-Su;Yang, Hyun-Suk;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.165-170
    • /
    • 2005
  • In this study, high intensity ultrasound was employed to induce mechano-chemical degradation during melt mixing of polycarbonate (PC) and a series of styrene-acrylonitrile (SAN) copolymers. It was confirmed that generation of macroradicals of constituent polymers can lead to in-situ copolymer formation by their mutual combination, which should be an efficient path to compatibilize immiscible polymer blends and stabilize their phase morphology in the absence of other chemical agents. Based on the effectiveness of the compatibilization by ultrasound assisted mixing process, we investigated the effects of viscosity ratio of PC and SAN and AN content in SAN on the compatibilization of PC/SAN blends. It was found that effectiveness of compatibilization is optimal when the AN content is in the range of favorable interaction with PC and the viscosity of the matrix is higher than that of the dispersed phase. In addition, changes in the interfacial tension between PC and SAN were assessed by examining relaxation spectra which were obtained from measuring rheological properties of ultrasonically treated blends.