• Title/Summary/Keyword: Constant torque

Search Result 416, Processing Time 0.029 seconds

Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection (고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감)

  • Kwon, Soon-O;Lee, Jeong-Jong;Lee, Geun-Ho;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).

A DTC Stator Flux Algorithm for the Performance Improvement of Induction Traction Motors

  • Van-Tien, Pham;Zheng, Trillion Q.;Yang, Zhong-ping;Lin, Fei;Do, Viet-dung
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.572-583
    • /
    • 2016
  • In view of the speed control characteristics of induction traction motors and the problems of direct torque control (DTC) algorithms in current applications, this paper presents a DTC algorithm characterized by a symmetrical polygon flux control and a closed loop power control in the constant-torque base speed region and constant-power field-weakening region of induction traction motors. This algorithm only needs to add a stator flux control algorithm to the traditional DTC structures. This has the benefit of simplicity, while maintaining the features of traditional algorithms such as a rapid dynamic response, uncomplicated control circuit, reduced dependence on motor parameters, etc. In addition, it obtains a smoother flux trajectory that is conducive to improvement of the harmonic elimination capability, the switching frequency utilization as well as the torque and power performance in the field-weakening region. The effectiveness and feasibility of this DTC algorithm are demonstrated by both theoretical analysis and experimental results.

Analysis of Estimated Position Error by Magnetic Saturation and Compensating Method for Sensorless Control of PMSM (자속 포화에 의한 PMSM 센서리스 위치 추정 오차 분석 및 보상 기법)

  • Park, Byung-Jun;Gu, Bon-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.3
    • /
    • pp.430-438
    • /
    • 2019
  • For a pump or a compressor motor, a high periodic load torque variation is induced by the mechanical works, and it causes system vibration and noise. To minimize these problems, load torque compensation method, injecting periodic torque current, could be utilized. However, with the sensorless control method, which is usually utilized in the pump and compressor for low cost, the periodic torque current degrades the accuracy of the rotor position estimation owing to the inductance variation. This paper analyzes the rotor position and speed estimation error of sensorless control method with constant motor parameters under period loading. Assuming the constant speed by the accurate load torque compensation, the speed error equation is derived in frequency domain with inductance depending on the stator current. Further, it is also shown that the rotor position error could be minimized by compensating the inductance variation. The simulation and experimental results verify that the derived speed error model and the validity of the inductance compensation method.

Analysis and development of the angular twist type torque-meter (비틀림각 검출방식을 이용한 토크미터의 해석과 개발)

  • 김지웅;오세훈;이종원;정연두;김진남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.103-110
    • /
    • 2000
  • In this study, the angular twist type torque-meter was designed and manufactured with STS 304 and fiber-reinforced composite materials to improve the dynamic properties of the existing torque-meter. From the Experimental and analytical results, it was found that the dynamic characteristics of co-cured bonded torque-meter rotating shaft were better than those of the adhesively and unreinforced torque-meter rotating shaft. For the torque-meter rotating shaft manufactured by co-cured bonded with the glass fiber-epoxy composite and with a stacking sequence of $[$\pm$30$^{\circ}$/STS304]_{2s}$, the natural frequency and the radial spring constant were increased by 64% and 137% compared to those of the unreinforced torque-meter rotating shaft.

  • PDF

Direct Torque Control of Induction Motor for Constant Switching by Torque Slop (토오크 기울기에 의한 일정스위칭을 위한 유도전동기의 직접토오크 제어)

  • Park, Jung-Kook;Kim, Dae-Kon;Jeong, Byeong-Ho;Choi, Youn-Ok;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.296-299
    • /
    • 2003
  • The conventional DTC strategy provides a fast torque response even though it has very simple scheme consisted with only two hysteresis band comparators and a switching table for torque and flux control. Drawbacks of the conventional DTC are relatively high torque ripple at low speed and variation of the switching frequency according to motor speed. In this paper, the new direct torque control(DTC) schemes are proposed. Those schemes are based on the torque slope and enable to reduce the torque ripple and maintain the switching frequency constantly.

  • PDF

A High Performance Pressure Control of SR Type Hydraulic Pump System using Direct Instantaneous Torque Control Method (직접순시토크 제어에 의한 SR구동형 유압 펌프시스템의 고성능 압력제어)

  • Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1751-1756
    • /
    • 2007
  • This paper presents a high performance pressure control scheme for SR(Switched Reluctance) type hydraulic oil pump using DITC(Direct Instantaneous Torque Control). SR drive has a good feature for pump applications due to a high efficiency, high speed and high torque characteristics. But, SR drive has high torque ripple in commutation region. So, the pump pressure variation is high in the region. In order to reduce the pressure variation, DITC combined with pressure control scheme is presented in this paper. A simple PI controller with flow and pressure limit, generates a reference torque to keep the constant actual pump pressure. The direct torque controller of SR drive generates inverter switching signals according to a control rule and a torque estimator. Computer simulation and experiemtal results show the validation of the proposed control scheme.

Study on the Ld, Lq Characteristic Parameter of Interior Permanent Magnet Synchronous Motor in different barrier width (배리어 길이에 따른 매입형 영구자석 동기전동기의 Ld, Lq 특성 파라미터에 관한 연구)

  • Jang, Ik-Sang;Jin, Chang-Sung;Jung, Dae-Sung;Kim, Seung-Joo;Park, Jae-Young;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.709-710
    • /
    • 2008
  • In this paper, we calculated permanent magnetic linkage flux ${\psi}_{\alpha}$ and Ld, Lq parameters of IPMSM and compared two model which has different barrier width. IPMSM has two kinds of torque that reluctance torque and magnetic torque. In constant torque region, using the Maxwell stress tensor method, we calculated the torque and current phase angle ${\beta}$ which has appeared maximum torque. In weakening flux region, we calculated the current phase angle ${\beta}$ which flux ${\psi}_o$ lower than limited flux ${\psi}_{omax}$. From the current phase angle ${\beta}$, we calculated torque by torque equation and compared two model characteristic.

  • PDF

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM 전동기의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.855-864
    • /
    • 2011
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of IPMSM(Interior Permanent Magnet Synchronous Motor). First, in order to improve the performance of speed tracking a nonlinear back-stepping controller is designed. Since it is difficult to control the high performance driving without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. In addition, for the efficiency of power consumption of the motor, controller is designed to operate motor with minimum current for maximum torque. The proposed controller is applied through simulation to the a 2-hp IPMSM for the angular velocity reference tracking performance and load torque volatility estimation, and to test the MTPA(Maximum Torque per Ampere) operation in constant torque operation region. The result verifies the efficacy of the proposed controller.

New Motor Parameter Estimation Method of Surface-mounted Permanent Magnet Motors (표면 부착형 영구자석 전동기의 새로운 상수 추정 방법)

  • Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.517-522
    • /
    • 2019
  • This paper proposes a new motor parameter estimation method. Because the proposed method is based on difference equations, it does not affect the error in the voltage magnitude so called dead-time effect. Information on the motor constant may be needed to improve the motor control performance. For example, a control technique called DTC (Direct Torque Control) requires a motor constant when calculating the torque and flux magnitude. As another example, in the case of predictive control, information on the motor parameters is required to generate voltage references. Because the constant of the motor fluctuates according to the driving environment, it is essential to estimate the correct motor constant because the control performance is degraded when incorrect motor information is used. In the proposed scheme, the motor constant estimated based on the voltage difference equation is obtained using the RLS (Recursive Least Square) technique. The RLS algorithm is applied to obtain the value through an iterative calculation so that the estimation performance is robust to noise. The simulation results carried out with surface mounted permanent magnet motors confirmed the validity of the proposed method.